AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Flagship Review

Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries

Jianwei Nai1,§Xinyue Zhao1,§Huadong Yuan1,§Xinyong Tao1( )Lin Guo2( )
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

§ Jianwei Nai, Xinyue Zhao, and Huadong Yuan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The growing concern for the exhaustion of fossil energy and the rapid revolution of electronics have created a rising demand for electrical energy storage devices with high energy density, for example, lithium secondary batteries (LSBs). With high surface area, low cost, excellent mechanical strength, and electrochemical stability, amorphous carbon-based materials (ACMs) have been widely investigated as promising platform for anode materials in the LSBs. In this review, we firstly summarize recent advances in the synthesis of the ACMs with various morphologies, ranging from zero- to three-dimensional structures. Then, the use of ACMs in Li-ion batteries and Li metal batteries is discussed respectively with the focus on the relationship between the structural features of the as-prepared ACMs and their roles in promoting electrochemical performances. Finally, the remaining challenges and the possible prospects for the use of ACMs in the LSBs are proposed to provide some useful clews for the future developments of this attractive area.

References

[1]
Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S. et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75-86.
[2]
Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063-1069.
[3]
Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989.
[4]
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
[5]
Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Towards better Li metal anodes: Challenges and strategies. Mater. Today 2020, 33, 56-74.
[6]
Shen, K.; Wang, Z.; Bi, X. X.; Ying, Y.; Zhang, D.; Jin, C. B.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q. et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 2019, 9, 1900260.
[7]
Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Seo, I. G.; Ma, Y. Q.; Chen, L.; Cottingham, P.; Zhou, C. W. Functional interlayer of PVDF- HFP and carbon nanofiber for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3340-3352.
[8]
Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; Jin, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020). Energy Storage Mater. 2020, 30, 346-366.
[9]
Kaskhedikar, N. A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664-2680.
[10]
Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2015, 2, 1500195.
[11]
Ni, W.; Shi, L. Y. Review article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. J. Vac. Sci. Technol. A 2019, 37, 040803.
[12]
Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823-2851.
[13]
Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe Hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189-4194.
[14]
Liu, J. Z.; Hu, Q.; Wang, Y.; Yang, Z.; Fan, X. Y.; Liu, L. M.; Guo, L. Achieving delafossite analog by in situ electrochemical self- reconstruction as an oxygen-evolving catalyst. Proc. Natl. Acad. Sci. USA 2020, 117, 21906-21913.
[15]
Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.
[16]
Nai, J. W.; Kang, J. X.; Guo, L. Tailoring the shape of amorphous nanomaterials: Recent developments and applications. Sci. China Mater. 2015, 58, 44-59.
[17]
Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.
[18]
Zhu, J. G.; Li, P. K.; Chen, X.; Legut, D.; Fan, Y. C.; Zhang, R. F.; Lu, Y. Y.; Cheng, X. B.; Zhang, Q. F. Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater. 2019, 16, 426-433.
[19]
Xiang, H. Q.; Fang, S. B.; Jiang, Y. Y. Mechanism of lithium insertion in carbons pyrolyzed at low temperature. Chin. Sci. Bull. 1999, 44, 385-390.
[20]
Kim, H.; Kim, S. W.; Park, Y. U.; Gwon, H.; Seo, D. H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813-821.
[21]
Zhu, Y. E.; Gu, H. C.; Chen, Y. N.; Yang, D. H.; Wei, J. P.; Zhou, Z. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. Ionics 2018, 24, 1075-1081.
[22]
Yang, T. Z.; Qian, T.; Wang, M. F.; Shen, X. W.; Xu, N.; Sun, Z. Z.; Yan, C. L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 2016, 28, 539-545.
[23]
Shen, F.; Luo, W.; Dai, J. Q.; Yao, Y. G.; Zhu, M. W.; Hitz, E.; Tang, Y. F.; Chen, Y. F.; Sprenkle, V. L.; Li, X. L. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium- ion batteries. Adv. Energy Mater. 2016, 6, 1600377.
[24]
Jin, C. B.; Sheng, O. W.; Luo, J. M.; Yuan, H. D.; Fang, C.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017, 37, 177-186.
[25]
Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004-11015.
[26]
Yan, L. J.; Liu, J.; Wang, Q. Q.; Sun, M. H.; Jiang, Z. G.; Liang, C. D.; Pan, F.; Lin, Z. In situ wrapping Si nanoparticles with 2D carbon nanosheets as high-areal-capacity anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 38159-38164.
[27]
Liu, N. T.; Mamat, X.; Jiang, R. Y.; Tong, W.; Huang, Y. D.; Jia, D. Z.; Li, Y. T.; Wang, L.; Wågberg, T.; Hu, G. Z. Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen- doped carbon coated Si composite for high performance lithium-ion batteries. Chem. Eng. J. 2018, 343, 78-85.
[28]
Liu, D. H.; Li, W. H.; Zheng, Y. P.; Cui, Z.; Yan, X.; Liu, D. S.; Wang, J. W.; Zhang, Y.; Lü, H. Y.; Bai, F. Y. et al. In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α→β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 2018, 30, 1706317.
[29]
Yin, B.; Cao, X. X.; Pan, A. Q.; Luo, Z. G.; Dinesh, S.; Lin, J. D.; Tang, Y.; Liang, S. Q.; Cao, G. Z. Encapsulation of CoSx nanocrystals into N/S Co-doped honeycomb-like 3D porous carbon for high- performance lithium storage. Adv. Sci. 2018, 5, 1800829.
[30]
Zheng, M. B.; Tang, H.; Hu, Q.; Zheng, S. S.; Li, L. L.; Xu, J.; Pang, H. Tungsten-based materials for lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1707500.
[31]
Lu, Y.; Wang, T. Y.; Li, X. R.; Zhang, G. X.; Xue, H. G.; Pang, H. Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Adv. 2016, 6, 87188-87212.
[32]
Xie, J.; Wang, J. Y.; Lee, H. R.; Yan, K.; Li, Y. Z.; Shi, F. F.; Huang, W.; Pei, A.; Chen, G.; Subbaraman, R. et al. Engineering stable interfaces for three-dimensional lithium metal anodes. Sci. Adv. 2018, 4, eaat5168.
[33]
Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.
[34]
Javed, M.; Saqib, A. N. S.; Ata-ur-Rehman; Ali, B.; Faizan, M.; Anang, D. A.; Iqbal, Z.; Abbas, S. M. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim. Acta 2019, 297, 250-257.
[35]
Jing, M. J.; Wang, J. F.; Hou, H. S.; Yang, Y. C.; Zhang, Y.; Pan, C. C.; Chen, J.; Zhu, Y. R.; Ji, X. B. Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 16824-16830.
[36]
Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093.
[37]
Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861-7866.
[38]
Etacheri, V.; Wang, C. W.; O'Connell, M. J.; Chan, C. K.; Pol, V. G. Porous carbon sphere anodes for enhanced lithium-ion storage. J. Mater. Chem. A 2015, 3, 9861-9868.
[39]
Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873-877.
[40]
Chen, W. M.; Wan, M.; Liu, Q.; Xiong, X. Q.; Yu, F. Q.; Huang, Y. H. Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries. Small Methods 2019, 3, 1800323.
[41]
Ye, W. B.; Pei, F.; Lan, X. N.; Cheng, Y.; Fang, X. L.; Zhang, Q. F.; Zheng, N. F.; Peng, D. L.; Wang, M. S. Stable nano-encapsulation of lithium through seed-free selective deposition for high-performance Li battery anodes. Adv. Energy Mater. 2020, 10, 1902956.
[42]
Zhou, X. S.; Yu, L.; Yu, X. Y.; Lou, X. W. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy Mater. 2016, 6, 1601177.
[43]
Jiang, W. W.; Liu, Q. H.; Peng, J. F.; Jiang, Y. H.; Ding, Y. H.; Wei, Q. Co9S8 nanoparticles embedded into amorphous carbon as anode materials for lithium-ion batteries. Nanotechnology 2020, 31, 235713.
[44]
Xie, W. H.; Li, S. Y.; Wang, S. Y.; Xue, S.; Liu, Z. J.; Jiang, X. Y.; He, D. Y. N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20334-20339.
[45]
Wang, H.; Tong, Z. Q.; Yang, R.; Huang, Z. M.; Shen, D.; Jiao, T. P.; Cui, X.; Zhang, W. J.; Jiang, Y.; Lee, C. S. Electrochemically stable sodium metal-tellurium/carbon nanorods batteries. Adv. Energy Mater. 2019, 9, 1903046.
[46]
Huang, S. Y.; Tang, L.; Najafabadi, H. S.; Chen, S.; Ren, Z. F. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy 2017, 38, 504-509.
[47]
Li, X. Y.; Chen, W. C.; Qian, Q. R.; Huang, H. T.; Chen, Y. M.; Wang, Z. Q.; Chen, Q. H.; Yang, J.; Li, J.; Mai, Y. W. Electrospinning- based strategies for battery materials. Adv. Energy Mater. 2021, 11, 2000845.
[48]
Chen, Y. M.; Lu, Z. G.; Zhou, L. M.; Mai, Y. W.; Huang, H. T. Triple- coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ. Sci. 2012, 5, 7898-7902.
[49]
Ye, X. C.; Lin, Z. H.; Liang, S. J.; Huang, X. H.; Qiu, X. Y.; Qiu, Y. C.; Liu, X. M.; Xie, D.; Deng, H.; Xiong, X. H. et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 2019, 19, 1860-1866.
[50]
Chen, M.; Zheng, J. H.; Sheng, O. W.; Jin, C. B.; Yuan, H. D.; Liu, T. F.; Liu, Y. J.; Wang, Y.; Nai, J. W.; Tao, X. Y. Sulfur-nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J. Mater. Chem. A 2019, 7, 18267-18274.
[51]
Song, R. R.; Song, H. H.; Zhou, J. S.; Chen, X. H.; Wu, B.; Yang, H. Y. Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. J. Mater. Chem. 2012, 22, 12369-12374.
[52]
Guo, W.; Li, X.; Xu, J. T.; Liu, H. K.; Ma, J. M.; Dou, S. X. Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode. Electrochim. Acta 2016, 188, 414-420.
[53]
Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.
[54]
Wang, Y. X.; Tian, W.; Wang, L. H.; Zhang, H. R.; Liu, J. L.; Peng, T. Y.; Pan, L.; Wang, X. B.; Wu, M. B. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 5577-5585.
[55]
Li, Y. M.; Xu, S. Y.; Wu, X. Y.; Yu, J. Z.; Wang, Y. S.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71-77.
[56]
Wang, Z. H.; Shen, D. K.; Wu, C. F.; Gu, S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 2018, 20, 5031-5057.
[57]
Wang, Y. L.; Qu, Q. L.; Gao, S. T.; Tang, G. S.; Liu, K. M.; He, S. J.; Huang, C. B. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 2019, 155, 706-726.
[58]
Xu, S. D.; Zhao, Y.; Liu, S. B.; Ren, X. X.; Chen, L.; Shi, W. J.; Wang, X. M.; Zhang, D. Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries. J. Mater. Sci. 2018, 53, 12334-12351.
[59]
Yuan, H. D.; Liu, T. F.; Liu, Y. J.; Nai, J. W.; Wang, Y.; Zhang, W. K.; Tao, X. Y. A review of biomass materials for advanced lithium-sulfur batteries. Chem. Sci. 2019, 10, 7484-7495.
[60]
Li, Q.; He, T.; Zhang, Y. Q.; Wu, H. Q.; Liu, J. J.; Qi, Y. J.; Lei, Y. P.; Chen, H.; Sun, Z. F.; Peng, C. et al. Biomass waste-derived 3D metal- free porous carbon as a bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Sustainable Chem. Eng. 2019, 7, 17039-17046.
[61]
Jing, S. Y.; Zhang, Y. L.; Chen, F.; Liang, H. G.; Yin, S. B.; Tsiakaras, P. Novel and highly efficient cathodes for Li-O2 batteries: 3D self- standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites. Appl. Catal. B Environ. 2019, 245, 721-732.
[62]
Li, H. B.; Shen, F.; Luo, W.; Dai, J. Q.; Han, X. G.; Chen, Y. N.; Yao, Y. G.; Zhu, H. L.; Fu, K.; Hitz, E. et al. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl. Mater. Interfaces 2016, 8, 2204-2210.
[63]
Qiu, D. P.; Kang, C. H.; Li, M.; Wei, J. Y.; Hou, Z. W.; Wang, F.; Yang, R. Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage. Carbon 2020, 162, 595-603.
[64]
Jiang, Z. L.; Sun, H.; Shi, W. K.; Cheng, J. Y.; Hu, J. Y.; Guo, H. L.; Gao, M. Y.; Zhou, H. J.; Sun, S. G. P-doped hive-like carbon derived from pinecone biomass as efficient catalyst for Li-O2 battery. ACS Sustainable Chem. Eng. 2019, 7, 14161-14169.
[65]
Liu, Y. H.; Yu, X. Y.; Fang, Y. J.; Zhu, X. S.; Bao, J. C.; Zhou, X. S.; Lou, X. W. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2018, 2, 725-735.
[66]
Wang, Z. Y.; Wang, Z. C.; Liu, W. T.; Xiao, W.; Lou, X. W. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 2013, 6, 87-91.
[67]
Zhu, D. M.; Liu, H. Q.; Tai, L. X.; Zhang, X. N.; Jiang, S.; Yang, S. M.; Yi, L.; Wen, W.; Li, X. L. Facile construction of novel 3-dimensional graphene/amorphous porous carbon hybrids with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 2017, 9, 35191-35199.
[68]
Hong, W. W.; Ge, P.; Jiang, Y. L.; Yang, L.; Tian, Y.; Zou, G. Q.; Cao, X. Y.; Hou, H. S.; Ji, X. B. Yolk-shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl. Mater. Interfaces 2019, 11, 10829-10840.
[69]
Yun, Y. S.; Jin, H. J. Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries. Mater. Lett. 2013, 108, 311-315.
[70]
Li, C. F.; Li, Z. P.; Ye, X. J.; Yang, X. Q.; Zhang, G. Q.; Li, Z. H. Crosslinking-induced spontaneous growth: A novel strategy for synthesizing sandwich-type graphene@Fe3O4 dots/amorphous carbon with high lithium storage performance. Chem. Eng. J. 2018, 334, 1614-1620.
[71]
Li, S. Y.; Liu, Y. Y.; Guo, P. S.; Wang, C. X. Self-climbed amorphous carbon nanotubes filled with transition metal oxide nanoparticles for large rate and long lifespan anode materials in lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 26818-26825.
[72]
Yang, G. J.; Li, X. Y.; Guan, Z.; Tong, Y. X.; Xu, B.; Wang, X. F.; Wang, Z. X.; Chen, L. Q. Insights into lithium and sodium storage in porous carbon. Nano Lett. 2020, 20, 3836-3843.
[73]
Zhang, Y. Z.; Chen, L.; Meng, Y.; Xie, J.; Guo, Y.; Xiao, D. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J. Power Sources 2016, 335, 20-30.
[74]
Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Zhang, Y.; Huang, C.; Zhang, Y. P.; Wang, Y. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem. Eng. J. 2019, 355, 478-486.
[75]
Chen, X.; Chen, X. R.; Hou, T. Z.; Li, B. Q.; Cheng, X. B.; Zhang, R.; Zhang, Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 2019, 5, eaau7728.
[76]
Yang, W.; Yang, W.; Zhang, F.; Wang, G. X.; Shao, G. J. Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: An advanced carbon nanostructure for superior lithium and sodium storage. Small 2018, 14, 1802221.
[77]
Jeong, S.; Li, X. L.; Zheng, J. M.; Yan, P. F.; Cao, R. G.; Jung, H. J.; Wang, C. M.; Liu, J.; Zhang, J. G. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. J. Power Sources 2016, 329, 323-329.
[78]
Haro, M.; Singh, V.; Steinhauer, S.; Toulkeridou, E.; Grammatikopoulos, P.; Sowwan, M. Nanoscale heterogeneity of multilayered Si anodes with embedded nanoparticle scaffolds for Li-ion batteries. Adv. Sci. 2017, 4, 1700180.
[79]
Zhang, B. C.; Wang, H.; He, L.; Zheng, C. J.; Jie, J. S.; Lifshitz, Y.; Lee, S. T.; Zhang, X. H. Centimeter-long single-crystalline Si nanowires. Nano Lett. 2017, 17, 7323-7329.
[80]
Liu, R. P.; Shen, C.; Dong, Y.; Qin, J. L.; Wang, Q.; Iocozzia, J.; Zhao, S. Q.; Yuan, K. J.; Han, C. P.; Li, B. H. et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 14797-14804.
[81]
Zhang, H.; Zhang, X. F.; Jin, H.; Zong, P.; Bai, Y.; Lian, K.; Xu, H.; Ma, F. A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chem. Eng. J. 2019, 360, 974-981.
[82]
Fan, P.; Mu, T. S.; Lou, S. F.; Cheng, X. Q.; Gao, Y. Z.; Du, C. Y.; Zuo, P. J.; Ma, Y. L.; Yin, G. P. Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. Electrochim. Acta 2019, 306, 590-598.
[83]
Zheng, M. B.; Tang, H.; Li, L. L.; Hu, Q.; Zhang, L.; Xue, H. G.; Pang, H. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 2018, 5, 1700592.
[84]
Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.
[85]
Tian, J. Y.; Shao, Q.; Dong, X. J.; Zheng, J. L.; Pan, D.; Zhang, X. Y.; Cao, H. L.; Hao, L. H.; Liu, J. R.; Mai, X. M. et al. Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. Electrochim. Acta 2018, 261, 236-245.
[86]
Wu, H. Y.; Qin, M. L.; Wang, W.; Cao, Z.; Liu, Z. Q.; Yu, Q. Y.; Lao, C. Y.; Zhang, D. Y.; Jia, B. R.; He, D. L. et al. Ultrafast synthesis of amorphous VOx embedded into 3D strutted amorphous carbon frameworks-short-range order in dual-amorphous composites boosts lithium storage. J. Mater. Chem. A 2018, 6, 7053-7061.
[87]
Zhang, Q. B.; Liao, J.; Liao, M.; Dai, J. Y.; Ge, H. L.; Duan, T.; Yao, W. T. One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries. Appl. Surf. Sci. 2019, 473, 799-806.
[88]
Fernando, J. F. S.; Zhang, C.; Firestein, K. L.; Nerkar, J. Y.; Golberg, D. V. ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. J. Mater. Chem. A 2019, 7, 8460-8471.
[89]
Wang, J. G.; Liu, H. Y.; Zhou, R.; Liu, X. R.; Wei, B. Q. Onion-like nanospheres organized by carbon encapsulated few-layer MoS2 nanosheets with enhanced lithium storage performance. J. Power Sources 2019, 413, 327-333.
[90]
Zhang, B. L.; Shi, H. D.; Ju, Z. J.; Huang, K.; Lian, C.; Wang, Y.; Sheng, O. W.; Zheng, J. H.; Nai, J. W.; Liu, T. F. et al. Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM. J. Mater. Chem. A 2020, 8, 26045-26054.
[91]
Jeong, B. O.; Jeong, S. H.; Park, M. S.; Kim, S.; Jung, Y. Synthesis of amorphous carbon materials for lithium secondary batteries. J. Nanosci. Nanotechnol. 2014, 14, 7788-7792.
[92]
Dong, Q. Y.; Hong, B.; Fan, H. L.; Jiang, H.; Zhang, K.; Lai, Y. Q. Inducing the formation of in situ Li3N-rich SEI via nanocomposite plating of Mg3N2 with lithium enables high-performance 3D lithium- metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 627-636.
[93]
Ju, Z. J.; Jin, C. B.; Yuan, H. D.; Yang, T.; Sheng, O. W.; Liu, T. F.; Liu, Y. J.; Wang, Y.; Ma, F. Y.; Zhang, W. K.; Nai, J. W. et al. A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries. Chem. Eng. J. 2021, 408, 128016.
[94]
Liu, S. F.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Yao, Z. J.; Zhang, L. Y.; Cheng, X. B.; Wang, X. L.; Zhang, Q.; Tu, J. P. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv. Energy Mater. 2018, 8, 1702322.
[95]
Wang, C. H.; Bai, G. L.; Yang, Y. F.; Liu, X. J.; Shao, H. X. Dendrite- free all-solid-state lithium batteries with lithium phosphorous oxynitride- modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217-223.
[96]
Wang, Z. J.; Yang, K.; Song, Y. L.; Lin, H.; Li, K.; Cui, Y. H.; Yang, L. Y.; Pan, F. Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Res. 2020, 13, 2431-2437.
[97]
Liu, T. F.; Zheng, J. L.; Hu, H. L.; Sheng, O. W.; Ju, Z. J.; Lu, G. X.; Liu, Y. J.; Nai, J. W.; Wang, Y.; Zhang, W. K. et al. In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries. J. Energy Chem. 2021, 55, 272-278.
[98]
Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548-1558.
[99]
Han, B.; Feng, D. Y.; Li, S.; Zhang, Z.; Zou, Y. C.; Gu, M.; Meng, H.; Wang, C. Y.; Xu, K.; Zhao, Y. S. et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries. Nano Lett. 2020, 20, 4029-4037.
[100]
Wang, R.; Yu, J.; Tang, J. T.; Meng, R. J.; Nazar, L. F.; Huang, L. Z.; Liang, X. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Mater. 2020, 32, 178-184.
[101]
Ma, L.; Kim, M. S.; Archer, L. A. Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 2017, 29, 4181-4189.
[102]
Zhong, Y. C.; Chen, Y. M.; Cheng, Y. F.; Fan, Q. L.; Zhao, H. J.; Shao, H. Y.; Lai, Y. Q.; Shi, Z. C.; Ke, X.; Guo, Z. P. Li alginate-based artificial SEI layer for stable lithium metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 37726-37731.
[103]
Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016-6022.
[104]
Kim, J. S.; Kim, D. W.; Jung, H. T.; Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 2015, 27, 2780-2787.
[105]
Yuan, H. D.; Nai, J. W.; Tian, H.; Ju, Z. J.; Zhang, W. K.; Liu, Y. J.; Tao, X. Y.; Lou, X. W. An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Sci. Adv. 2020, 6, eaaz3112.
[106]
Zhang, F.; Liu, X. Y.; Yang, M. H.; Cao, X. Q.; Huang, X. Y.; Tian, Y.; Zhang, F.; Li, H. X. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy 2020, 69, 104443.
[107]
Kang, C.; Lahiri, I.; Baskaran, R.; Kim, W. G.; Sun, Y. K.; Choi, W. 3-Dimensional carbon nanotube for Li-ion battery anode. J. Power Sources 2012, 219, 364-370.
[108]
Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Qi, L. Y.; Tang, H.; Zhang, Z. Y.; Liu, W.; Zhou, H. H. Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 2018, 15, 249-256.
[109]
An, Y. L.; Tian, Y.; Li, Y.; Wei, C. L.; Tao, Y.; Liu, Y. P.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 2020, 400, 125843.
[110]
Wang, Z. Y.; Lu, Z. X.; Guo, W.; Luo, Q.; Yin, Y. H.; Liu, X. B.; Li, Y. S.; Xia, B. Y.; Wu, Z. P. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 2021, 33, 2006702.
[111]
Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764-777.
[112]
Liu, L.; Yin, Y. X.; Li, J. Y.; Li, N. W.; Zeng, X. X.; Ye, H.; Guo, Y. C.; Wan, L. J. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule 2017, 1, 563-575.
[113]
Kang, H. K.; Woo, S. G.; Kim, J. H.; Lee, S. R.; Kim, Y. J. Conductive porous carbon film as a lithium metal storage medium. Electrochim. Acta 2015, 176, 172-178.
[114]
Lan, X. N.; Ye, W. B.; Zheng, H. F.; Cheng, Y.; Zhang, Q. B.; Peng, D. L.; Wang, M. S. Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth. Nano Energy 2019, 66, 104178.
[115]
Derenskyi, V.; Gomulya, W.; Talsma, W.; Salazar-Rios, J. M.; Fritsch, M.; Nirmalraj, P.; Riel, H.; Allard, S.; Scherf, U.; Loi, M. A. On-chip chemical self-assembly of semiconducting single-walled carbon nanotubes (SWNTs): Toward robust and scale invariant SWNTs transistors. Adv. Mater. 2017, 29, 1606757.
[116]
Sheng, O. W.; Zheng, J. H.; Ju, Z. J.; Jin, C. B.; Wang, Y.; Chen, M.; Nai, J. W.; Liu, T. F.; Zhang, W. K.; Liu, Y. J. et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 2020, 32, 2000223.
[117]
Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506-510.
[118]
Zhao, L. Z.; Wu, H. H.; Yang, C. H.; Zhang, Q. B.; Zhong, G. M.; Zheng, Z. M.; Chen, H. X.; Wang, J. M.; He, K.; Wang, B. L. et al. Mechanistic origin of the high performance of yolk@shell Bi2S3@N- doped carbon nanowire electrodes. ACS Nano 2018, 12, 12597-12611.
[119]
Tao, L.; Huang, Y. B.; Yang, X. Q.; Zheng, Y. W.; Liu, C.; Di, M. W.; Zheng, Z. F. Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: I. Effect of carbonization temperature. RSC Adv. 2018, 8, 7102-7109.
[120]
Chen, F.; Yu, C. P.; Cui, J. W.; Yu, D. B.; Song, P.; Wang, Y.; Qin, Y. Q.; Yan, J.; Wu, Y. C. A core-shell structured metal-organic frameworks- derived porous carbon nanowires as a superior anode for alkaline metal-ion batteries. Appl. Surf. Sci. 2021, 541, 148473.
[121]
Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556-2564.
[122]
Wang, S. B.; Xiao, C. L.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C. Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. J. Mater. Chem. A 2015, 3, 6742-6746.
Nano Research
Pages 2053-2066
Cite this article:
Nai J, Zhao X, Yuan H, et al. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Research, 2021, 14(7): 2053-2066. https://doi.org/10.1007/s12274-021-3506-9
Topics:

883

Views

29

Crossref

27

Web of Science

30

Scopus

4

CSCD

Altmetrics

Received: 26 January 2021
Revised: 02 April 2021
Accepted: 07 April 2021
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return