Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Multi-photon-pumped lasing based on metal-halide perovskites is promising for nonlinear optics and practical frequency- upconversion devices in integrated photonic systems. However, at present almost all the multi-photon-pumped lasing emissions from perovskite microcavities were limited for two-photon excitation, and also suffered from a compromise in room temperature or low temperature operation conditions. In this study, based on the vapor-phase epitaxial CsPbBr3 microplatelets with high crystallinity, self-formed high-quality microcavities, and great thermal stability, low-threshold and high-quality factor whispering gallery mode lasing was realized under single-, two-, and three-photon excitation, and the lasing action is very stable under continuous pulsed laser irradiation (~ 3.6 × 107 laser shots). More importantly, the three-photon-pumped lasing can be efficiently sustained at a high temperature of ~ 400 K, and the characteristic temperature was determined to be as high as ~ 152.6 K, indicating the highly temperature-insensitive gain threshold. Note that this is the first report on high-temperature three-photon-pumped lasing on perovskite microcavities. Moreover, an aggressive thermal cycling test (two cycles, 290−400−290 K) was further performed to indicate the stability and repeatability of the multi-photon-pumped lasing characteristics. It can be anticipated that the results obtained represent a significant step toward the temperature-insensitive frequency-upconversion lasing, inspiring the exploitation of advantageous perovskites for novel applications.
Foster, M. A.; Turner, A. C.; Sharping, J. E.; Schmidt, B. S.; Lipson, M.; Gaeta, A. L. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006, 441, 960–963.
Franken, P. A.; Ward, J. F. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys. 1963, 35, 23–39.
Denk, W.; Strickler, J. H.; Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76.
Plakhotnik, T.; Walser, D.; Pirotta, M.; Renn, A.; Wild, U. P. Nonlinear spectroscopy on a single quantum system: Two-photon absorption of a single molecule. Science 1996, 271, 1703–1705.
Baker, S.; Robinson, J. S.; Haworth, C. A.; Teng, H.; Smith, R. A.; Chirilă, C. C.; Lein, M.; Tisch, J. W. G.; Marangos, J. P. Probing proton dynamics in molecules on an attosecond time Scale. Science 2006, 312, 424–427.
Krüger, M.; Schenk, M.; Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 2011, 475, 78–81.
Liu, Z. Z.; Yang, J.; Du, J.; Hu, Z. P.; Shi, T. C.; Zhang, Z. Y.; Liu, Y. Q.; Tang, X. S.; Leng, Y. X.; Li, R. X. Robust subwavelength single- mode perovskite nanocuboid laser. ACS Nano 2018, 12, 5923–5931.
Zhu, H.; Chen, A. Q.; Wu, Y. Y.; Zhang, W. F.; Su, S. C.; Ji, X.; Jing, P. T.; Yu, S. F.; Shan, C. X.; Huang, F. Seven-photon-excited upconversion lasing at room temperature. Adv. Opt. Mater. 2018, 6, 1800518.
Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High- quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.
Zhang, H. H.; Liao, Q.; Wang, X. D.; Yao, J. N.; Fu, H. B. Water- resistant perovskite polygonal microdisks laser in flexible photonics devices. Adv. Opt. Mater. 2016, 4, 1718–1725.
Tang, B.; Dong, H. X.; Sun, L. X.; Zheng, W. H.; Wang, Q.; Sun, F. F.; Jiang, X. W.; Pan, A. L.; Zhang, L. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano 2017, 11, 10681–10688.
Dai, J.; Xu, C. X.; Ding, R.; Zheng, K.; Shi, Z. L.; Lv, C. G.; Cui, Y. P. Combined whispering gallery mode laser from hexagonal ZnO microcavities. Appl. Phys. Lett. 2009, 95, 191117.
Zhang, W.; Peng, L.; Liu, J.; Tang, A. W.; Hu, J. S.; Yao, J. N.; Zhao, Y. S. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 2016, 28, 4040–4046.
Xu, Y. Q.; Chen, Q.; Zhang, C. F.; Wang, R.; Wu, H.; Zhang, X. Y.; Xing, G. C.; Yu, W. W.; Wang, X. Y.; Zhang, Y. et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 2016, 138, 3761–3768.
Zhao, L. Y.; Shang, Q. Y.; Gao, Y.; Shi, J.; Liu, Z.; Chen, J.; Mi, Y.; Yang, P. F.; Zhang, Z. P.; Du, W. N. et al. High-temperature continuous- wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition. ACS Nano 2018, 12, 9390–9396.
Xing, G. C.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X. F.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low-temperature solution- processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480.
Shi, Z. F.; Sun, X. G.; Wu, D.; Xu, T. T.; Tian, Y. T.; Zhang, Y. T.; Li, X. J.; Du, G. T. Near-infrared random lasing realized in a perovskite CH3NH3PbI3 thin film. J. Mater. Chem. C 2016, 4, 8373–8379.
Kim, Y. H.; Cho, H.; Lee, T. W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. USA 2016, 113, 11694–11702.
Si, J. J.; Liu, Y.; Wang, N. N.; Xu, M.; Li, J.; He, H. P.; Wang, J. P.; Jin, Y. Z. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Res. 2017, 10, 1329–1335.
Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 2016, 3, 1600137.
del Águila, A. G.; Do, T. T. H.; Xing, J.; Jee, W. J.; Khurgin, J. B.; Xiong, Q. H. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Res. 2020, 13, 1962– 1969.
Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rew. Mater. 2019, 4, 169–188.
Dong, Y. T.; Wang, Y. K.; Yuan, F. L.; Johnston, A.; Liu, Y.; Ma, D. X.; Choi, M. J.; Chen, B.; Chekini, M.; Baek, S. W. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 2020, 15, 668–674.
Kim, Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.
Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.
Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
Wang, Y.; Yu, D. J.; Wang, Z.; Li, X. M.; Chen, X. X.; Nalla, V.; Zeng, H. B.; Sun, H. D. Solution-grown CsPbBr3/Cs4PbBr6 perovskite nanocomposites: Toward temperature-insensitive optical gain. Small 2017, 13, 1701587.
Hu, X. L.; Zhou, H.; Jiang, Z. Y.; Wang, X.; Yuan, S. P.; Lan, J. Y.; Fu, Y. P.; Zhang, X. H.; Zheng, W. H.; Wang, X. X. et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano 2017, 11, 9869–9876.
Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.
Wang, Y. G.; Yasar, M.; Luo, Z. Y.; Zhou, S. S.; Yu, Y. W.; Li, H. Q.; Yang, R.; Wang, X. X.; Pan, A. L.; Gan, L. et al. Temperature difference triggering controlled growth of all-inorganic perovskite nanowire arrays in air. Small 2018, 14, 1803010.
Wang, X. X.; Shoaib, M.; Wang, X.; Zhang, X. H.; He, M.; Luo, Z. Y.; Zheng, W. H.; Li, H. L.; Yang, T. F.; Zhu, X. L. et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition- dependent strong exciton-photon coupling. ACS Nano 2018, 12, 6170–6178.
Huang, C.; Sun, W. Z.; Fan, Y. B.; Wang, Y. J.; Gao, Y. S.; Zhang, N.; Wang, K. Y.; Liu, S.; Wang, S.; Xiao, S. M. et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate. ACS Nano 2018, 12, 3865–3874.
Li, G. H.; Che, T.; Ji, X. Q.; Liu, S. D.; Hao, Y. Y.; Cui, Y. X.; Liu, S. Z. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite. Adv. Funct. Mater. 2019, 29, 1805553.
Zhou, B. E.; Jiang, M. M.; Dong, H. X.; Zheng, W. H.; Huang, Y. Z.; Han, J. Y.; Pan, A. L.; Zhang, L. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity. ACS Photonics 2019, 6, 793–801.
Huang, C. Y.; Zou, C.; Mao, C. Y.; Corp, K. L.; Yao, Y. C.; Lee, Y. J.; Schlenker, C. W.; Jen, A. K. Y.; Lin, L. Y. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 2017, 4, 2281–2289.
Mi, Y.; Liu, Z. X.; Shang, Q. Y.; Niu, X. X.; Shi, J.; Zhang, S.; Chen, J.; Du, W. N.; Wu, Z. Y.; Wang, R. et al. Fabry-pérot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities. Small 2018, 14, 1703136.
Hu, Z. P.; Liu, Z. Z.; Bian, Y.; Liu, D. J.; Tang, X. S.; Hu, W.; Zang, Z. G.; Zhou, M.; Sun, L. D.; Tang, J. X. et al. Robust cesium lead halide perovskite microcubes for frequency upconversion lasing. Adv. Opt. Mater. 2017, 5, 1700419.
Zhao, C. Y.; Tian, W. M.; Liu, J. X.; Sun, Q.; Luo, J. J.; Yuan, H.; Gai, B. D.; Tang, J.; Guo, J. W.; Jin, S. Y. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett. 2019, 10, 2357–2362.
Zheng, Z.; Wang, X. X.; Shen, Y. W.; Luo, Z. Y.; Li, L. G.; Gan, L.; Ma, Y.; Li, H. Q.; Pan, A. L.; Zhai, T. Y. Space-confined synthesis of 2D all-inorganic CsPbI3 perovskite nanosheets for multiphoton-pumped lasing. Adv. Opt. Mater. 2018, 6, 1800879.
Wang, Y.; Li, X. M.; Nalla, V.; Zeng, H. B.; Sun, H. D. Solution- processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 2017, 27, 1605088.
Liao, Q.; Hu, K.; Zhang, H. H.; Wang, X. D.; Yao, J. N.; Fu, H. B. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater. 2015, 27, 3405–3410.
Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 2015, 27, 1248–1245.
Zhang, Q.; Su, R.; Du, W. N.; Liu, X. F.; Zhao, L. Y.; Ha, S. T.; Xiong, Q. H. Advances in small perovskite-based lasers. Small Methods 2017, 1, 1700163.
Gu, Z. Y.; Wang, K. Y.; Sun, W. Z.; Li, J. K.; Liu, S.; Song, Q. H.; Xiao, S. M. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 2016, 4, 472–479.
Grovenor, C. R. M. Grain boundaries in semiconductors. J. Phys. C Solid State Phys. 1985, 18, 4079–4119.
Dai, J.; Zheng, H. G.; Zhu, C.; Lu, J. F.; Xu, C. X. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. J. Mater. Chem. C 2016, 4, 4408–4413.
Wang, K. Y.; Wang, S.; Xiao, S. M.; Song, Q. H. Recent advances in perovskite micro- and nanolasers. Adv. Opt. Mater. 2018, 6, 1800278.
Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.
Shibata, H.; Sakai, M.; Yamada, A.; Matsubara, K.; Sakurai, K.; Tampo, H.; Ishizuka, S.; Kim, K. K.; Niki, S. Excitation-power dependence of free exciton photoluminescence of semiconductors. Jpn. J. Appl. Phys. 2005, 44, 6113–6114.
Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.
Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
Gu, Z. K.; Zhou, Z. H.; Huang, Z. D.; Wang, K.; Cai, Z. R.; Hu, X. T.; Li, L. H.; Li, M. Z.; Zhao, Y. S.; Song, Y. L. Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics. Adv. Mater. 2020, 32, 1908006.
Niu, Y. W.; Zhang, F.; Bai, Z. L.; Dong, Y. P.; Yang, J.; Liu, R. B.; Zou, B. S.; Li, J. B.; Zhong, H. Z. Aggregation-induced emission features of organometal halide perovskites and their fluorescence probe applications. Adv. Opt. Mater. 2015, 3, 112–119.
Shi, Z. F.; Zhang, Y. T.; Cui, X. J.; Zhuang, S. W.; Wu, B.; Dong, X.; Zhang, B. L.; Du, G. T. High-temperature continuous-wave laser realized in hollow microcavities. Sci. Rep. 2014, 4, 7180.
He, X. X.; Liu, P.; Zhang, H. H.; Liao, Q.; Yao, J. N.; Fu, H. B. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 2017, 29, 1604510.
Mott, N. F. Metal-insulator transition. Rev. Mod. Phys. 1968, 40, 677–683.
Tang, X. S.; Hu, Z. P.; Yuan, W.; Hu, W.; Shao, H. B.; Han, D. J.; Zheng, J. F.; Hao, J. Y.; Zang, Z. G.; Du, J. et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 2017, 5, 1600788.
Li, X. M.; Wang, Y.; Sun, H. D.; Zeng, H. B. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 2017, 29, 1701185.
Johnson, J. C.; Knutsen, K. P.; Yan, H. Q.; Law, M.; Zhang, Y. F.; Yang, P. D.; Saykally, R. J. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett. 2004, 4, 197–204.
Röder, R.; Wille, M.; Geburt, S.; Rensberg, J.; Zhang, M. Y.; Lu, J. G.; Capasso, F.; Buschlinger, R.; Peschel, U.; Ronning, C. Continuous wave nanowire lasing. Nano Lett. 2013, 13, 3602–3606.
Kim, Y. H.; Wolf, C.; Kim, H.; Lee, T. W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy 2018, 52, 329–335.
Gu, Z. K.; Wang, K.; Li, H. Z.; Gao, M.; Li, L. H.; Kuang, M. X.; Zhao, Y. S.; Li, M. Z.; Song, Y. L. Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 2017, 13, 1603217.
Ushigome, R.; Fujita, M.; Sakai, A.; Baba, T.; Kokubun, Y. GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect. Jpn. J. Appl. Phys. 2002, 41, 6364–6369.
Kirchain, R.; Kimerling, L. A roadmap for nanophotonics. Nat. Photonics 2007, 1, 303–305.
Li, H. D.; Yu, S. F.; Lau, S. P.; Leong, E. S. P.; Yang, H. Y.; Chen, T. P.; Abiyasa, A. P.; Ng, C. Y. High-temperature lasing characteristics of ZnO epilayers. Adv. Mater. 2006, 18, 771–775.
Nakamura, T.; Takahashi, T.; Adachi, S. Temperature dependence of GaAs random laser characteristics. Phys. Rev. B 2010, 81, 125324.
Ohtomo, A.; Tamura, K.; Kawasaki, M.; Makino, T.; Segawa, Y.; Tang, Z. K.; Wong, G. K. L.; Matsumoto, Y.; Koinuma, H. Room- temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl. Phys. Lett. 2000, 77, 2204–2206.
Bidnyk, S.; Schmidt, T. J.; Cho, Y. H.; Gainer, G. H.; Song, J. J.; Keller, S.; Mishra, U. K.; Denbaars, S. P. High-temperature stimulated emission in optically pumped InGaN/GaN multiquantum wells. Appl. Phys. Lett. 1998, 72, 1623–1625.
Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.