AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity

Zhifeng Shi1( )Fei Zhang1Jingjing Yan1Yuan Zhang1Xu Chen1Shu Chen1Di Wu1Xinjian Li1Yu Zhang2( )Chongxin Shan1
Key Laboratory of Materials Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 China
State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Qianjin Street 2699 Changchun 130012 China
Show Author Information

Graphical Abstract

Abstract

Multi-photon-pumped lasing based on metal-halide perovskites is promising for nonlinear optics and practical frequency- upconversion devices in integrated photonic systems. However, at present almost all the multi-photon-pumped lasing emissions from perovskite microcavities were limited for two-photon excitation, and also suffered from a compromise in room temperature or low temperature operation conditions. In this study, based on the vapor-phase epitaxial CsPbBr3 microplatelets with high crystallinity, self-formed high-quality microcavities, and great thermal stability, low-threshold and high-quality factor whispering gallery mode lasing was realized under single-, two-, and three-photon excitation, and the lasing action is very stable under continuous pulsed laser irradiation (~ 3.6 × 107 laser shots). More importantly, the three-photon-pumped lasing can be efficiently sustained at a high temperature of ~ 400 K, and the characteristic temperature was determined to be as high as ~ 152.6 K, indicating the highly temperature-insensitive gain threshold. Note that this is the first report on high-temperature three-photon-pumped lasing on perovskite microcavities. Moreover, an aggressive thermal cycling test (two cycles, 290−400−290 K) was further performed to indicate the stability and repeatability of the multi-photon-pumped lasing characteristics. It can be anticipated that the results obtained represent a significant step toward the temperature-insensitive frequency-upconversion lasing, inspiring the exploitation of advantageous perovskites for novel applications.

Electronic Supplementary Material

Download File(s)
12274_2021_3508_MOESM1_ESM.pdf (2.2 MB)

References

1

Foster, M. A.; Turner, A. C.; Sharping, J. E.; Schmidt, B. S.; Lipson, M.; Gaeta, A. L. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006, 441, 960–963.

2

Franken, P. A.; Ward, J. F. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys. 1963, 35, 23–39.

3

Denk, W.; Strickler, J. H.; Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76.

4

Plakhotnik, T.; Walser, D.; Pirotta, M.; Renn, A.; Wild, U. P. Nonlinear spectroscopy on a single quantum system: Two-photon absorption of a single molecule. Science 1996, 271, 1703–1705.

5

Baker, S.; Robinson, J. S.; Haworth, C. A.; Teng, H.; Smith, R. A.; Chirilă, C. C.; Lein, M.; Tisch, J. W. G.; Marangos, J. P. Probing proton dynamics in molecules on an attosecond time Scale. Science 2006, 312, 424–427.

6

Krüger, M.; Schenk, M.; Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 2011, 475, 78–81.

7

Liu, Z. Z.; Yang, J.; Du, J.; Hu, Z. P.; Shi, T. C.; Zhang, Z. Y.; Liu, Y. Q.; Tang, X. S.; Leng, Y. X.; Li, R. X. Robust subwavelength single- mode perovskite nanocuboid laser. ACS Nano 2018, 12, 5923–5931.

8

Zhu, H.; Chen, A. Q.; Wu, Y. Y.; Zhang, W. F.; Su, S. C.; Ji, X.; Jing, P. T.; Yu, S. F.; Shan, C. X.; Huang, F. Seven-photon-excited upconversion lasing at room temperature. Adv. Opt. Mater. 2018, 6, 1800518.

9

Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High- quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.

10

Zhang, H. H.; Liao, Q.; Wang, X. D.; Yao, J. N.; Fu, H. B. Water- resistant perovskite polygonal microdisks laser in flexible photonics devices. Adv. Opt. Mater. 2016, 4, 1718–1725.

11

Tang, B.; Dong, H. X.; Sun, L. X.; Zheng, W. H.; Wang, Q.; Sun, F. F.; Jiang, X. W.; Pan, A. L.; Zhang, L. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano 2017, 11, 10681–10688.

12

Dai, J.; Xu, C. X.; Ding, R.; Zheng, K.; Shi, Z. L.; Lv, C. G.; Cui, Y. P. Combined whispering gallery mode laser from hexagonal ZnO microcavities. Appl. Phys. Lett. 2009, 95, 191117.

13

Zhang, W.; Peng, L.; Liu, J.; Tang, A. W.; Hu, J. S.; Yao, J. N.; Zhao, Y. S. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 2016, 28, 4040–4046.

14

Xu, Y. Q.; Chen, Q.; Zhang, C. F.; Wang, R.; Wu, H.; Zhang, X. Y.; Xing, G. C.; Yu, W. W.; Wang, X. Y.; Zhang, Y. et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 2016, 138, 3761–3768.

15

Zhao, L. Y.; Shang, Q. Y.; Gao, Y.; Shi, J.; Liu, Z.; Chen, J.; Mi, Y.; Yang, P. F.; Zhang, Z. P.; Du, W. N. et al. High-temperature continuous- wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition. ACS Nano 2018, 12, 9390–9396.

16

Xing, G. C.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X. F.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low-temperature solution- processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480.

17

Shi, Z. F.; Sun, X. G.; Wu, D.; Xu, T. T.; Tian, Y. T.; Zhang, Y. T.; Li, X. J.; Du, G. T. Near-infrared random lasing realized in a perovskite CH3NH3PbI3 thin film. J. Mater. Chem. C 2016, 4, 8373–8379.

18

Kim, Y. H.; Cho, H.; Lee, T. W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. USA 2016, 113, 11694–11702.

19

Si, J. J.; Liu, Y.; Wang, N. N.; Xu, M.; Li, J.; He, H. P.; Wang, J. P.; Jin, Y. Z. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Res. 2017, 10, 1329–1335.

20

Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 2016, 3, 1600137.

21

del Águila, A. G.; Do, T. T. H.; Xing, J.; Jee, W. J.; Khurgin, J. B.; Xiong, Q. H. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Res. 2020, 13, 1962– 1969.

22

Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rew. Mater. 2019, 4, 169–188.

23

Dong, Y. T.; Wang, Y. K.; Yuan, F. L.; Johnston, A.; Liu, Y.; Ma, D. X.; Choi, M. J.; Chen, B.; Chekini, M.; Baek, S. W. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 2020, 15, 668–674.

24

Kim, Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.

25

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

26

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

27

Wang, Y.; Yu, D. J.; Wang, Z.; Li, X. M.; Chen, X. X.; Nalla, V.; Zeng, H. B.; Sun, H. D. Solution-grown CsPbBr3/Cs4PbBr6 perovskite nanocomposites: Toward temperature-insensitive optical gain. Small 2017, 13, 1701587.

28

Hu, X. L.; Zhou, H.; Jiang, Z. Y.; Wang, X.; Yuan, S. P.; Lan, J. Y.; Fu, Y. P.; Zhang, X. H.; Zheng, W. H.; Wang, X. X. et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano 2017, 11, 9869–9876.

29

Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.

30

Wang, Y. G.; Yasar, M.; Luo, Z. Y.; Zhou, S. S.; Yu, Y. W.; Li, H. Q.; Yang, R.; Wang, X. X.; Pan, A. L.; Gan, L. et al. Temperature difference triggering controlled growth of all-inorganic perovskite nanowire arrays in air. Small 2018, 14, 1803010.

31

Wang, X. X.; Shoaib, M.; Wang, X.; Zhang, X. H.; He, M.; Luo, Z. Y.; Zheng, W. H.; Li, H. L.; Yang, T. F.; Zhu, X. L. et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition- dependent strong exciton-photon coupling. ACS Nano 2018, 12, 6170–6178.

32

Huang, C.; Sun, W. Z.; Fan, Y. B.; Wang, Y. J.; Gao, Y. S.; Zhang, N.; Wang, K. Y.; Liu, S.; Wang, S.; Xiao, S. M. et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate. ACS Nano 2018, 12, 3865–3874.

33

Li, G. H.; Che, T.; Ji, X. Q.; Liu, S. D.; Hao, Y. Y.; Cui, Y. X.; Liu, S. Z. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite. Adv. Funct. Mater. 2019, 29, 1805553.

34

Zhou, B. E.; Jiang, M. M.; Dong, H. X.; Zheng, W. H.; Huang, Y. Z.; Han, J. Y.; Pan, A. L.; Zhang, L. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity. ACS Photonics 2019, 6, 793–801.

35

Huang, C. Y.; Zou, C.; Mao, C. Y.; Corp, K. L.; Yao, Y. C.; Lee, Y. J.; Schlenker, C. W.; Jen, A. K. Y.; Lin, L. Y. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 2017, 4, 2281–2289.

36

Mi, Y.; Liu, Z. X.; Shang, Q. Y.; Niu, X. X.; Shi, J.; Zhang, S.; Chen, J.; Du, W. N.; Wu, Z. Y.; Wang, R. et al. Fabry-pérot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities. Small 2018, 14, 1703136.

37

Hu, Z. P.; Liu, Z. Z.; Bian, Y.; Liu, D. J.; Tang, X. S.; Hu, W.; Zang, Z. G.; Zhou, M.; Sun, L. D.; Tang, J. X. et al. Robust cesium lead halide perovskite microcubes for frequency upconversion lasing. Adv. Opt. Mater. 2017, 5, 1700419.

38

Zhao, C. Y.; Tian, W. M.; Liu, J. X.; Sun, Q.; Luo, J. J.; Yuan, H.; Gai, B. D.; Tang, J.; Guo, J. W.; Jin, S. Y. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett. 2019, 10, 2357–2362.

39

Zheng, Z.; Wang, X. X.; Shen, Y. W.; Luo, Z. Y.; Li, L. G.; Gan, L.; Ma, Y.; Li, H. Q.; Pan, A. L.; Zhai, T. Y. Space-confined synthesis of 2D all-inorganic CsPbI3 perovskite nanosheets for multiphoton-pumped lasing. Adv. Opt. Mater. 2018, 6, 1800879.

40

Wang, Y.; Li, X. M.; Nalla, V.; Zeng, H. B.; Sun, H. D. Solution- processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 2017, 27, 1605088.

41

Liao, Q.; Hu, K.; Zhang, H. H.; Wang, X. D.; Yao, J. N.; Fu, H. B. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater. 2015, 27, 3405–3410.

42

Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 2015, 27, 1248–1245.

43

Zhang, Q.; Su, R.; Du, W. N.; Liu, X. F.; Zhao, L. Y.; Ha, S. T.; Xiong, Q. H. Advances in small perovskite-based lasers. Small Methods 2017, 1, 1700163.

44

Gu, Z. Y.; Wang, K. Y.; Sun, W. Z.; Li, J. K.; Liu, S.; Song, Q. H.; Xiao, S. M. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 2016, 4, 472–479.

45

Grovenor, C. R. M. Grain boundaries in semiconductors. J. Phys. C Solid State Phys. 1985, 18, 4079–4119.

46

Dai, J.; Zheng, H. G.; Zhu, C.; Lu, J. F.; Xu, C. X. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. J. Mater. Chem. C 2016, 4, 4408–4413.

47

Wang, K. Y.; Wang, S.; Xiao, S. M.; Song, Q. H. Recent advances in perovskite micro- and nanolasers. Adv. Opt. Mater. 2018, 6, 1800278.

48

Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

49

Shibata, H.; Sakai, M.; Yamada, A.; Matsubara, K.; Sakurai, K.; Tampo, H.; Ishizuka, S.; Kim, K. K.; Niki, S. Excitation-power dependence of free exciton photoluminescence of semiconductors. Jpn. J. Appl. Phys. 2005, 44, 6113–6114.

50

Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.

51

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

52

Gu, Z. K.; Zhou, Z. H.; Huang, Z. D.; Wang, K.; Cai, Z. R.; Hu, X. T.; Li, L. H.; Li, M. Z.; Zhao, Y. S.; Song, Y. L. Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics. Adv. Mater. 2020, 32, 1908006.

53

Niu, Y. W.; Zhang, F.; Bai, Z. L.; Dong, Y. P.; Yang, J.; Liu, R. B.; Zou, B. S.; Li, J. B.; Zhong, H. Z. Aggregation-induced emission features of organometal halide perovskites and their fluorescence probe applications. Adv. Opt. Mater. 2015, 3, 112–119.

54

Shi, Z. F.; Zhang, Y. T.; Cui, X. J.; Zhuang, S. W.; Wu, B.; Dong, X.; Zhang, B. L.; Du, G. T. High-temperature continuous-wave laser realized in hollow microcavities. Sci. Rep. 2014, 4, 7180.

55

He, X. X.; Liu, P.; Zhang, H. H.; Liao, Q.; Yao, J. N.; Fu, H. B. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 2017, 29, 1604510.

56

Mott, N. F. Metal-insulator transition. Rev. Mod. Phys. 1968, 40, 677–683.

57

Tang, X. S.; Hu, Z. P.; Yuan, W.; Hu, W.; Shao, H. B.; Han, D. J.; Zheng, J. F.; Hao, J. Y.; Zang, Z. G.; Du, J. et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 2017, 5, 1600788.

58

Li, X. M.; Wang, Y.; Sun, H. D.; Zeng, H. B. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 2017, 29, 1701185.

59

Johnson, J. C.; Knutsen, K. P.; Yan, H. Q.; Law, M.; Zhang, Y. F.; Yang, P. D.; Saykally, R. J. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett. 2004, 4, 197–204.

60

Röder, R.; Wille, M.; Geburt, S.; Rensberg, J.; Zhang, M. Y.; Lu, J. G.; Capasso, F.; Buschlinger, R.; Peschel, U.; Ronning, C. Continuous wave nanowire lasing. Nano Lett. 2013, 13, 3602–3606.

61

Kim, Y. H.; Wolf, C.; Kim, H.; Lee, T. W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy 2018, 52, 329–335.

62

Gu, Z. K.; Wang, K.; Li, H. Z.; Gao, M.; Li, L. H.; Kuang, M. X.; Zhao, Y. S.; Li, M. Z.; Song, Y. L. Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 2017, 13, 1603217.

63

Ushigome, R.; Fujita, M.; Sakai, A.; Baba, T.; Kokubun, Y. GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect. Jpn. J. Appl. Phys. 2002, 41, 6364–6369.

64

Kirchain, R.; Kimerling, L. A roadmap for nanophotonics. Nat. Photonics 2007, 1, 303–305.

65

Li, H. D.; Yu, S. F.; Lau, S. P.; Leong, E. S. P.; Yang, H. Y.; Chen, T. P.; Abiyasa, A. P.; Ng, C. Y. High-temperature lasing characteristics of ZnO epilayers. Adv. Mater. 2006, 18, 771–775.

66

Nakamura, T.; Takahashi, T.; Adachi, S. Temperature dependence of GaAs random laser characteristics. Phys. Rev. B 2010, 81, 125324.

67

Ohtomo, A.; Tamura, K.; Kawasaki, M.; Makino, T.; Segawa, Y.; Tang, Z. K.; Wong, G. K. L.; Matsumoto, Y.; Koinuma, H. Room- temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl. Phys. Lett. 2000, 77, 2204–2206.

68

Bidnyk, S.; Schmidt, T. J.; Cho, Y. H.; Gainer, G. H.; Song, J. J.; Keller, S.; Mishra, U. K.; Denbaars, S. P. High-temperature stimulated emission in optically pumped InGaN/GaN multiquantum wells. Appl. Phys. Lett. 1998, 72, 1623–1625.

69

Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.

Nano Research
Pages 492-501
Cite this article:
Shi Z, Zhang F, Yan J, et al. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Research, 2022, 15(1): 492-501. https://doi.org/10.1007/s12274-021-3508-7
Topics:

809

Views

12

Crossref

11

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 13 January 2021
Revised: 07 April 2021
Accepted: 08 April 2021
Published: 30 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return