AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission

Dandan Yang1Xiaoming Li1( )Yuelei Li1Bo Cai1Lin Su2Shengli Zhang1Zhili Juan1Cuifang Meng1Dongling Geng1Jiaxin Chen1Feng Xu2Haibo Zeng1( )
MIIT Key Laboratory of Advanced Display Materials and Devices Institute of Optoelectronics & Nanomaterials College of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
SEU-FEI Nano-Pico Center Key Laboratory of MEMS of Ministry of Education Southeast University Nanjing 210096 China
Show Author Information

Graphical Abstract

Abstract

Controllable anisotropic growth of perovskite nanocrystals (NCs) is challenging since it is difficult to separate the nucleation and growth processes. Here, a two-step nucleation strategy is proposed to control the binding interaction between surface ligands and NCs, resulting in facet-induced coordination competition. Oleic acid as surface activated ligand leads to the formation of defective lead bromine octahedron, and the binding interaction between 4-dodecylbenzenesulfonic acid and lead atoms promotes the formation of two kinds of binding interactions. Based on this strategy, the anisotropic growth of CsPbBr3 nanoplatelet (NPLs) with adjusted length from 11.4 to 24 nm, and the evolution of NPLs from stacked to tongue-shaped have been realized. Elemental line scan reveals the sulfur atoms mainly distribute at the edge of NPLs. Furthermore, binding energy calculation and experimental results illustrate the coordination competition of different binding interaction on specific facets induces the anisotropic growth of NPLs. Importantly, strong emission anisotropy of highly ordered NPLs with polarization ratio up to 0.58 is illustrated. This work not only deepens our understanding of the controllable synthesis of perovskite NCs, but also provides a reference for the regulation of light emitting diode and soler cells.

Electronic Supplementary Material

Download File(s)
12274_2021_3509_MOESM1_ESM.pdf (4.5 MB)

References

1

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

2

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

3

Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D'Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.

4

Dong, Y. T.; Wang, Y. K.; Yuan, F. L.; Johnston, A.; Liu, Y.; Ma, D. X.; Choi, M. J.; Chen, B.; Chekini, M.; Baek, S. W. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotech. 2020, 15, 668–674.

5

Kim, Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.

6

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

7

Chen, M.; Hu, H. C.; Tan, Y. S.; Yao, N.; Zhong, Q. X.; Sun, B. Q.; Cao, M. H.; Zhang, Q.; Yin, Y. D. Controlled growth of dodecapod- branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy 2018, 53, 559–566.

8

Liu, J. L.; Shi, W. X.; Ni, B.; Yang, Y.; Li, S. Z.; Zhuang, J.; Wang, X. Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nat. Chem. 2019, 11, 839–845.

9

Pradhan, N. Journey of making cesium lead halide perovskite nanocrystals: What's next. J. Phys. Chem. Lett. 2019, 10, 5847–5855.

10

Zhu, C. Q.; Chen, D. D.; Cao, W. C.; Lai, R. C.; Pu, C. D.; Li, J. Z.; Kong, X. Q.; Peng, X. G. Facet-dependent on-surface reactions in the growth of CdSe nanoplatelets. Angew. Chem. , Int. Ed. 2019, 58, 17764–17770.

11

Wang, Y. H.; Pu, C. D.; Lei, H. R.; Qin, H. Y.; Peng, X. G. CdSe@CdS dot@platelet nanocrystals: Controlled epitaxy, monoexponential decay of two-dimensional exciton, nonblinking photoluminescence of single nanocrystal. J. Am. Chem. Soc. 2019, 141, 17617–17628.

12

Zhang, B. W.; Goldoni, L.; Zito, J.; Dang, Z. Y.; Almeida, G.; Zaccaria, F.; de Wit, J.; Infante, I.; De Trizio, L.; Manna, L. Alkyl phosphonic acids deliver CsPbBr3 nanocrystals with high photoluminescence quantum yield and truncated octahedron shape. Chem. Mater. 2019, 31, 9140–9147.

13

Peng, L. C.; Dutta, S. K.; Mondal, D.; Hudait, B.; Shyamal, S.; Xie, R. G.; Mahadevan, P.; Pradhan, N. Arm growth and facet modulation in perovskite nanocrystals. J. Am. Chem. Soc. 2019, 141, 16160–16168.

14

Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A. F.; Wang, K.; Muller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B. et al. Chemical cutting of perovskite nanowires into single-photon emissive low- aspect-ratio CsPbX3 (X = Cl, Br, I) nanorods. Angew. Chem. , Int. Ed. 2018, 57, 16094–16098.

15

Yang, D.; Li, P. L.; Zou, Y. T.; Cao, M. H.; Hu, H. C.; Zhong, Q. X.; Hu, J. X.; Sun, B. Q.; Duhm, S.; Xu, Y. et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 2019, 31, 1575–1583.

16

Jing, Q.; Su, Y. C.; Xing, X.; Lu, Z. D. Highly luminescent CsPbBr3 nanorods synthesized by a ligand-regulated reaction at the water-oil interface. J. Mater. Chem. C. 2019, 7, 1854–1858.

17

Li, Y. X.; Huang, H.; Xiong, Y.; Richter, A. F.; Kershaw, S. V.; Feldmann, J.; Rogach, A. L. Using polar alcohols for the direct synthesis of cesium lead halide perovskite nanorods with anisotropic emission. ACS Nano 2019, 13, 8237–8245.

18

Wang, S.; Yu, J. H; Zhang, M. Y.; Chen, D. C.; Li, C. S.; Chen, R.; Jia, G. H.; Rogach, A. L.; Yang, X. Y. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett. 2019, 19, 6315–6322.

19

Hudait, B.; Dutta, S. K.; Pradhan, N. Isotropic CsPbBr3 perovskite nanocrystals beyond nanocubes: Growth and optical properties. ACS Energy Lett. 2020, 5, 650–656.

20

Yang, D. D.; Li, X. M.; Wu, Y.; Wei, C. T.; Qin, Z. Y.; Zhang, C. F.; Sun, Z. G.; Li, Y. L.; Wang, Y.; Zeng, H. B. Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Adv. Opt. Mater. 2019, 7, 1900276.

21

Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.

22

Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.

23
Persson, K. Materials Data on CsPbBr3 (SG: 140) by Materials Project. United States, 2016, DOI: 10.17188/1330982.
24

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

25

Wu, Y.; Li, X. M.; Zeng, H. B. Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 2019, 4, 673–681.

26

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

27

Hintermayr, V. A.; Polavarapu, L.; Urban, A. S.; Feldmann, J. Accelerated carrier relaxation through reduced coulomb screening in two-dimensional halide perovskite nanoplatelets. ACS Nano 2018, 12, 10151–10158.

28

Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

29

Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.

30

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

31

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169–11186.

32

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

33

Deacon, G. B.; Phillips, R. J. Relationships between the carbon- oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordin. Chem. Rev. 1980, 33, 227–250.

34

Zhang, J.; Zhang, H. B.; Cao, W. C.; Pang, Z. F.; Li, J. Z.; Shu, Y. F.; Zhu, C. Q.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 15675–15683.

35

Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

36

Świderski, G.; Kalinowska, M.; Świsłocka, R.; Wojtulewski, S.; Lewandowski, W. Spectroscopic (FT-IR, FT-Raman and 1H and 13C NMR) and theoretical in MP2/6–311++G(d, p) and B3LYP/ 6–311++G(d, p) levels study of benzenesulfonic acid and alkali metal benzenesulfonates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 100, 41–50.

37

Zhu, Z.; Hadjiev, V. G.; Rong, Y. G.; Guo, R.; Cao, B.; Tang, Z. J.; Qin, F.; Li, Y.; Wang, Y. N.; Hao, F. et al. Interaction of organic cation with water molecule in perovskite MAPbI3: From dynamic orientational disorder to hydrogen bonding. Chem. Mater. 2016, 28, 7385–7393.

38

Glaser, T.; Müller, C.; Sendner, M.; Krekeler, C.; Semonin, O. E.; Hull, T. D.; Yaffe, O.; Owen, J. S.; Kowalsky, W.; Pucci, A. et al. Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 2015, 6, 2913–2918.

39

Woo, J. Y.; Kim, Y.; Bae, J.; Kim, T. G.; Kim, J. W.; Lee, D. C.; Jeong, S. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 2017, 29, 7088–7092.

40

Liu, L. G.; Huang, S.; Pan, L. F.; Shi, L. J.; Zou, B. S.; Deng, L. G.; Zhong, H. Z. Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization. Angew. Chem. , Int. Ed. 2017, 56, 1780–1783.

41

Liu, Y.; Wu, Z. Y.; Liu, X. T.; Han, S. G.; Li, Y. B.; Yang, T.; Ma, Y.; Hong, M. C.; Luo, J. H.; Sun, Z. H. Intrinsic strong linear dichroism of multilayered 2D hybrid perovskite crystals toward highly polarized-sensitive photodetection. Adv. Opt. Mater. 2019, 7, 1901049.

42

Gao, Y.; Zhao, L. Y.; Shang, Q. Y.; Zhong, Y. G.; Liu, Z.; Chen, J.; Zhang, Z. P.; Shi, J.; Du, W. N.; Zhang, Y. F. et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv. Mater. 2018, 30, 1801805.

43

Shi, Y.; Duan, P.; Huo, S.; Li, Y.; Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 2018, 30, 1705011.

44

Srivastava, A. K.; Zhang, W. L.; Schneider, J.; Rogach, A. L.; Chigrinov, V. G.; Kwok, H. S. Photoaligned nanorod enhancement films with polarized emission for liquid-crystal-display applications. Adv. Mater. 2017, 29, 1701091.

45

Wang, D.; Wu, D.; Dong, D.; Chen, W.; Hao, J. J.; Qin, J.; Xu, B.; Wang, K.; Sun, X. W. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 2016, 8, 11565–11570.

46

He, J.; Towers, A.; Wang, Y. N.; Yuan, P. S.; Jiang, Z.; Chen, J. S.; Gesquiere, A. J.; Wu, S. T.; Dong, Y. J. In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale 2018, 10, 15436–15441.

47

Shi, Z. F.; Li, Y.; Li, S.; Ji, H. F.; Lei, L. Z.; Wu, D.; Xu, T. T.; Xu, J. M.; Tian, Y. T.; Li, X. J. Polarized emission effect realized in CH3NH3PbI3 perovskite nanocrystals. J. Mater. Chem. C. 2017, 5, 8699–8706.

48

Dou, Y. J.; Cao, F.; Dudka, T.; Li, Y. G.; Wang, S.; Zhang, C. X.; Gao, Y.; Yang, X. Y.; Rogach, A. L. Lattice distortion in mixed-anion lead halide perovskite nanorods leads to their high fluorescence anisotropy. ACS Mater. Lett. 2020, 2, 814–820.

49

Meng, L. H.; Yang, C. G.; Meng, J. J.; Wang, Y. Z.; Ge, Y.; Shao, Z. Q.; Zhang, G. F.; Rogach, A. L.; Zhong, H. Z. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Res. 2019, 12, 1411–1416.

50

Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D. D.; Lin, L. W.; Ritchie, R. O.; Yang, P. D.; Alivisatos, A. P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523–35533.

Nano Research
Pages 502-509
Cite this article:
Yang D, Li X, Li Y, et al. Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission. Nano Research, 2022, 15(1): 502-509. https://doi.org/10.1007/s12274-021-3509-6
Topics:

805

Views

23

Crossref

22

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 01 February 2021
Revised: 08 April 2021
Accepted: 08 April 2021
Published: 09 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return