AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios

Chenqi Shen1Pengtang Wang1Leigang Li1Xiaoqing Huang1,2( )Qi Shao1
College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
Show Author Information

Graphical Abstract

Abstract

Syngas (CO + H2) is the incredibly important feedstock for producing synthetic fuels and various value-added chemicals. CO2 electrochemical reduction to syngas is an environmental-friendly and sustainable approach, but still challenging to produce tunable syngas with a wide ratio of CO/H2. Herein, by modulating the structure and phase, we have successfully obtained a series of copper–indium (Cu-In) catalysts, which are efficient for producing syngas with tunable CO/H2 ratios. A series of CuIn bimetallic catalysts with different structures from hollow sphere to two-layer hollow sphere and different phases from CuO to Cu2O are developed. We find that the CO and H2 are the only gaseous products, in which the CO/H2 ratios can be readily tuned from 1.2 ± 0.1 to 9.0 ± 1.5 by simply controlling the thermal annealing temperature. It also exhibits high durability during a 10-h test. The unique performance is attributed to the modulated In enrichment on the Cu surfaces during the CO2 reduction reaction, which causes the differences in binding energies for key reaction intermediates, thus resulting in the tunable composition of syngas. The present work emphasizes a simple yet efficient phase and structure modulating strategy for designing potential electrocatalysts for producing syngas with widely tunable CO/H2 ratios.

Electronic Supplementary Material

Download File(s)
12274_2021_3512_MOESM1_ESM.pdf (3.7 MB)

References

1

Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068.

2

Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016, 538, 84–87.

3

Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

4

Yang, D. X.; Zhu, Q. G.; Sun, X. F.; Chen, C. J.; Guo, W. W.; Yang, G. Y.; Han, B. X. Electrosynthesis of a defective indium selenide with 3D structure on a substrate for tunable CO2 electroreduction to syngas. Angew. Chem. , Int. Ed. 2020, 59, 2354–2359.

5

Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Ma, X.; Kim, M.; Adhikari, S.; Lu, C.; Dun, C. C.; Chi, M. F. et al. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nat. Commun. 2019, 10, 5724.

6

Zhang, H. W.; Ming, J. T.; Zhao, J. W.; Gu, Q.; Xu, C.; Ding, Z. X.; Yuan, R. S.; Zhang, Z. Z.; Lin, H. X.; Wang, X. X. et al. High-rate, tunable syngas production with artificial photosynthetic cells. Angew. Chem. , Int. Ed. 2019, 58, 7718–7722.

7

Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun. 2019, 10, 3724.

8

Guo, S. J.; Zhao, S. Q.; Wu, X. Q.; Li, H.; Zhou, Y. J.; Zhu, C.; Yang, N. J.; Jiang, X.; Gao, J.; Bai, L. et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat. Commun. 2017, 8, 1828.

9

Marques Mota, F.; Le Tri Nguyen, D.; Lee, J. E.; Piao, H. Y.; Choy, J. H.; Hwang, Y. J.; Kim, D. H. Toward an effective control of the H2 to CO ratio of syngas through CO2 electroreduction over immobilized gold nanoparticles on layered titanate nanosheets. ACS Catal. 2018, 8, 4364–4374.

10

Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643–644.

11

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

12

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom Indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. , Int. Ed. 2020, 59, 22465–22469.

13

Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. A.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777–2783.

14

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. , Int. Ed. 2021, 60, 6170–6176.

15

Liang, Y. J.; Wu, W.; Wang, P.; Liou, S. C.; Liu, D. X.; Ehrman, S. H. Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4. Nano Res. 2018, 11, 4049–4061.

16

Ross, M. B.; Dinh, C. T.; Li, Y. F.; Kim, D.; De Luna, P.; Sargent, E. H.; Yang, P. D. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J. Am. Chem. Soc. 2017, 139, 9359–9363.

17

Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

18

Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

19

Lv, K. L.; Teng, C.; Shi, M. H.; Yuan, Y.; Zhu, Y.; Wang, J. R.; Kong, Z.; Lu, X. Y.; Zhu, Y. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv. Funct. Mater. 2018, 28, 1802339.

20

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

21

Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater. 2018, 28, 1804762.

22

Liu, S. B.; Sun, C.; Xiao, J.; Luo, J. L. Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes. ACS Catal. 2020, 10, 3158–3163.

23

Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163.

24

Zhu, W. L.; Kattel, S.; Jiao, F.; Chen, J. G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 2019, 9, 1802840.

25

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

26

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

27

Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313–2317.

28

Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K. R.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

29

Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 2017, 139, 15848–15857.

30

Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

31

Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016, 6, 2842–2851.

32

Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

33

Tan, D. X.; Zhang, J. L.; Yao, L.; Tan, X. N.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zheng, L. R.; Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774.

34

Grosse, P.; Gao, D. F.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects. Angew. Chem. , Int. Ed. 2018, 57, 6192–6197.

35

Wang, H. X.; Liang, Z.; Tang, M.; Chen, G. X.; Li, Y. B.; Chen, W.; Lin, D. C.; Zhang, Z. W.; Zhou, G. M.; Li, J. et al. Self-selective catalyst synthesis for CO2 reduction. Joule 2019, 3, 1927–1936.

36

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

37

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. , Int. Ed. 2017, 56, 3621–3624.

38

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

39

Arán-Ais, R. M.; Gao, D. F.; Roldan Cuenya, B. Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 2018, 51, 2906–2917.

40

Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.

41

Hoch, L. B.; Wood, T. E.; O'Brien, P. G.; Liao, K.; Reyes, L. M.; Mims, C. A.; Ozin, G. A. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv. Sci. 2014, 1, 1400013.

42

Salvi, A. M.; Langerame, F.; Macchia, A.; Sammartino, M. P.; Tabasso, M. L. XPS characterization of (copper-based) coloured stains formed on limestone surfaces of outdoor roman monuments. Chem. Cent. J. 2012, 6, S10.

Nano Research
Pages 528-534
Cite this article:
Shen C, Wang P, Li L, et al. Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios. Nano Research, 2022, 15(1): 528-534. https://doi.org/10.1007/s12274-021-3512-y
Topics:

812

Views

16

Crossref

17

Web of Science

16

Scopus

2

CSCD

Altmetrics

Received: 06 March 2021
Revised: 07 April 2021
Accepted: 08 April 2021
Published: 22 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return