AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanoscale engineering of conducting polymers for emerging applications in soft electronics

Tao Wang( )Yiwen BaoMengdi ZhuangJiacheng LiJuncheng ChenHangxun Xu( )
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Abstract

Soft electronics featuring exceptional mechanical compliance and excellent electrical performance hold great promise for applications in soft robotics, artificial intelligence, bio-integrated electronics, and wearable electronics. Intrinsically stretchable and conductive materials are crucial for soft electronics, enabling large-area and scalable fabrication, high device density, and good mechanical compliance. Conducting polymers are inherently stretchable and conductive. They can be precisely synthesized from vastly available building blocks, and thus they provide a fruitful platform for fabricating soft electronics. However, amorphous bulk-phase conducting polymers typically exhibit poor mechanical and electrical characteristics. Consequently, it is highly desirable to develop novel engineering approaches to overcome the intrinsic limitations of conducting polymers. In recent years, numerous engineering strategies have been developed to enhance their performances in soft electronic devices via constructing various nanostructures. In this review, we first summarize several unique methodologies to fabricate conducting polymer-based nanostructures. We then discuss how nanoscale engineering approaches can improve several crucial parameters, including electrical conductivity, stretchability, sensitivity, and self-healing property of conducting polymers. Moreover, we also discuss device-level integration of conducting polymer-based nanostructures with other materials for applications in skin-inspired electronics and bio-integrated electronics. Finally, we provide perspectives on challenges and future directions in engineering nanostructured conducting polymers for soft electronics.

References

[1]
Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603-1607.
[2]
Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.
[3]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[4]
Wang, L. L.; Chen, D.; Jiang, K.; Shen, G. Z. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 2017, 46, 6764-6815.
[5]
Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560-1583.
[6]
Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048-1056.
[7]
Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244-1252.
[8]
Wang, S. H.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. N. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033-1045.
[9]
Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907-913.
[10]
Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998-1003.
[11]
van de Burgt, Y.; Melianas, A.; Keene, S. T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386-397.
[12]
Wang, T.; Zhang, Y.; Liu, Q. C.; Cheng, W.; Wang, X. R.; Pan, L. J.; Xu, B. X.; Xu, H. X. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. 2018, 28, 1705551.
[13]
Chen, X.; Park, Y. J.; Kang, M.; Kang, S. K.; Koo, J.; Shinde, S. M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 2018, 9, 1690.
[14]
Yu, X. E.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. F. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473-479.
[15]
Lim, S.; Son, D.; Kim, J.; Lee, Y. B.; Song, J. K.; Choi, S.; Lee, D. J.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375-383.
[16]
Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-533.
[17]
Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937-950.
[18]
Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.
[19]
Li, T.; Li, Y.; Zhang, T. Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 2019, 52, 288-296.
[20]
Gao, Y.; Zhang, Y.; Wang, X.; Sim, K.; Liu, J. S.; Chen, J.; Feng, X.; Xu, H. X.; Yu, C. J. Moisture-triggered physically transient electronics. Sci. Adv. 2017, 3, e1701222.
[21]
Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.
[22]
Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L.; Ouyang, J. Y. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.
[23]
Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83-88.
[24]
Xue, Z. G.; Song, H.; Rogers, J. A.; Zhang, Y. H.; Huang, Y. G. Mechanically-guided structural designs in stretchable inorganic electronics. Adv. Mater. 2020, 32, 1902254.
[25]
Park, J. K.; Nan, K. W.; Luan, H. W.; Zheng, N.; Zhao, S. W.; Zhang, H.; Cheng, X.; Wang, H. L.; Li, K.; Xie, T. et al. Remotely triggered assembly of 3D mesostructures through shape-memory effects. Adv. Mater. 2019, 31, 1905715.
[26]
Kleinschmidt, A. T.; Lipomi, D. J. Stretchable conjugated polymers: A case study in topic selection for new research groups. Acc. Chem. Res. 2018, 51, 3134-3143.
[27]
Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803-809.
[28]
Sim, K.; Rao, Z.; Ershad, F.; Yu. C. J. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv. Mater. 2020, 32, 1902417.
[29]
Liu, K.; Jiang, Y. W.; Bao, Z. N.; Yan, X. Z. Skin-inspired electronics enabled by supramolecular polymeric materials. CCS Chem. 2019, 1, 431-447.
[30]
Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133.
[31]
Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive polymers: Opportunities and challenges in biomedical applications. Chem. Rev. 2018, 118, 6766-6843.
[32]
Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117, 6467-6499.
[33]
Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978-1987.
[34]
Wang, M.; Baek, P.; Akbarinejad, A.; Barker, D.; Travas-Sejdic, J. Conjugated polymers and composites for stretchable organic electronics. J. Mater. Chem. C 2019, 7, 5534-5552.
[35]
Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684-6696.
[36]
Zhao, Y.; Liu, B. R.; Pan, L. J.; Yu, G. H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856-2870.
[37]
Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734-1743.
[38]
Ghosh, S.; Maiyalagan, T.; Basu, R. N. Nanostructured conducting polymers for energy applications: Towards a sustainable platform. Nanoscale 2016, 8, 6921-6947.
[39]
Xue, Y.; Chen, S.; Yu, J. R.; Bunes, B. R.; Xue, Z. X.; Xu, J. K.; Lu, B. Y.; Zang, L. Nanostructured conducting polymers and their composites: Synthesis methodologies, morphologies and applications. J. Mater. Chem. C 2020, 8, 10136-10159.
[40]
Zhang, T.; Qi, H. Y.; Liao, Z. Q.; Horev, Y. D.; Panes-Ruiz, L. A.; Petkov, P. S.; Zhang, Z.; Shivhare, R.; Zhang, P. P.; Liu, K. J. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 2019, 10, 4225.
[41]
Xu, Y. F.; Wang, X. X.; Zhou, J. W.; Song, B.; Jiang, Z.; Lee, E. M. Y.; Huberman, S.; Gleason, K. K.; Chen, G. Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 2018, 4, eaar3031.
[42]
Kim, M.; Kim, H. I.; Ryu, S. U.; Son, S. Y.; Park, S. A.; Khan, N.; Shin, W. S.; Song, C. E.; Park, T. Improving the photovoltaic performance and mechanical stability of flexible all-polymer solar cells via tailoring intermolecular interactions. Chem. Mater. 2019, 31, 5047-5055.
[43]
Lin, B. J.; Zhang, L.; Zhao, H.; Xu, X. B.; Zhou, K.; Zhang, S.; Gou, L.; Fan, B. B.; Zhang, L.; Yan, H. P. et al. Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells. Nano Energy 2019, 59, 277-284.
[44]
Chen, A. X.; Kleinschmidt, A. T.; Choudhary, K.; Lipomi, D. J. Beyond stretchability: Strength, toughness, and elastic range in semiconducting polymers. Chem. Mater. 2020, 32, 7582-7601.
[45]
Chung, J.; Khot, A.; Savoie, B. M.; Boudouris, B. W. 100th Anniversary of Macromolecular Science Viewpoint: Recent advances and opportunities for mixed ion and charge conducting polymers. ACS Macro Lett. 2020, 9, 646-655.
[46]
Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H. C.; Kang, J.; Park, J.; Gu, X. D. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097.
[47]
Mun, J.; Kang, J.; Zheng, Y.; Luo, S. C.; Wu, H. C.; Matsuhisa, N.; Xu, J.; Wang, G. J. N.; Yun, Y.; Xue, G. et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv. Mater. 2019, 31, 1903912.
[48]
Ditte, K.; Perez, J.; Chae, S.; Hambsch, M.; Al-Hussein, M.; Komber, H.; Formanek, P.; Mannsfeld, S. C. B.; Fery, A.; Kiriy, A. et al. Ultrasoft and high-mobility block copolymers for skin-compatible electronics. Adv. Mater. 2021, 33, 2005416.
[49]
Ocheje, M. U.; Charron, B. P.; Cheng, Y. H.; Chuang, C. H.; Soldera, A.; Chiu, Y. C.; Rondeau-Gagne, S. Amide-containing alkyl chains in conjugated polymers: Effect on self-assembly and electronic properties. Macromolecules 2018, 51, 1336-1344.
[50]
Kayser, L. V.; Russell, M. D.; Rodriquez, D.; Abuhamdieh, S. N.; Dhong, C.; Khan, S.; Stein, A. N.; Ramírez, J.; Lipomi, D. J. RAFT Polymerization of an intrinsically stretchable water-soluble block copolymer scaffold for PEDOT. Chem. Mater. 2018, 30, 4459-4468.
[51]
Yano, H.; Kudo, K.; Marumo, K.; Okuzaki, H. Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm-1. Sci. Adv. 2019, 5, eaav9492.
[52]
Inal, S.; Rivnay, J.; Suiu, A. O.; Malliaras, G. G.; McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 2018, 51, 1368-1376.
[53]
Sugiyama, F.; Kleinschmidt, A. T.; Kayser, L. V.; Rodriquez, D.; Finn III, M.; Alkhadra, M. A.; Wan, J. M. H.; Ramírez, J.; Chiang, A. S. C.; Root, S. E. et al. Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polym. Chem. 2018, 9, 4354-4363.
[54]
Baek, P.; Voorhaar, L.; Barker, D.; Travas-Sejdic, J. Molecular approach to conjugated polymers with biomimetic properties. Acc. Chem. Res. 2018, 51, 1581-1589.
[55]
Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. N. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog. Polym. Sci. 2020, 100, 101181.
[56]
Sim, K.; Rao, Z.; Kim, H. J.; Thukral, A.; Shim, H.; Yu, C. J. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 2019, 5, eaav5749.
[57]
Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.
[58]
Oh, Y. J.; Rondeau-Gagné, S.; Chiu, Y. C.; Chortos, A.; Lissel, F.; Wang, G. J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539, 411-415.
[59]
Yuk, H.; Lu, B. Y.; Lin, S.; Qu, K.; Xu, J. K.; Luo, J. H.; Zhao, X. H. 3D printing of conducting polymers. Nat. Commun. 2020, 11, 1604.
[60]
Li, C.; Bai, H.; Shi, G. Q. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009, 38, 2397-2409.
[61]
Wegner, G. Polymers with metal-like conductivity—A review of their synthesis, structure and properties. Angew. Chem., Int. Ed. 1981, 20, 361-381.
[62]
Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.
[63]
Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135-145.
[64]
Jeon, J.; Tan, A. T. L.; Lee, J.; Park, J. E.; Won, S.; Kim, S.; Bedewy, M.; Go, J.; Kim, J. K.; Hart, A. J.; Wie, J. J. High-speed production of crystalline semiconducting polymer line arrays by meniscus oscillation self-assembly. ACS Nano 2020, 14, 17254-17261.
[65]
Dauzon, E.; Mansour, A. E.; Niazi, M. R.; Munir, R.; Smilgies, D. M.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A. Conducting and stretchable PEDOT:PSS electrodes: Role of additives on self-assembly, morphology, and transport. ACS Appl. Mater. Interfaces 2019, 11, 17570-17582.
[66]
Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. N. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421-428.
[67]
Zhou, Y. H.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J. et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327-332.
[68]
Lee, Y. Y.; Kang, H. Y.; Gwon, S. H.; Choi, G. M.; Lim, S. M.; Sun, J. Y.; Joo, Y. C. A strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels. Adv. Mater. 2016, 28, 1636-1643.
[69]
Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28, 4455-4461.
[70]
De Izarra, A.; Park, S.; Lee, J.; Lansac, Y.; Jang, Y. H. Ionic liquid designed for PEDOT:PSS conductivity enhancement. J. Am. Chem. Soc. 2018, 140, 5375-5384.
[71]
Savagatrup, S.; Chan, E.; Renteria-Garcia, S. M.; Printz, A. D.; Zaretski, A. V.; O'Connor, T. F.; Rodriquez, D.; Valle, E.; Lipomi, D. J. Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv. Funct. Mater. 2015, 25, 427-436.
[72]
Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.
[73]
Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851-855.
[74]
Paul, A. O.; Heeger, A. J.; Wudl, F. Optical properties of conducting polymers. Chem. Rev. 1988, 88, 183-200.
[75]
Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 110, 4724-4771.
[76]
Guo, X. G.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922-928.
[77]
Kim, Y. J.; Jung, H. T.; Ahn, C. W.; Jeon, H. J. Simultaneously induced self-assembly of poly(3-hexylthiophene) (P3HT) nanowires and thin-film fabrication via solution-floating method on a water substrate. Adv. Mater. Interfaces, 2017, 4, 1700342.
[78]
Guan, Y. S.; Zhang, Z. L.; Tang, Y. C.; Yin, J.; Ren, S. Q. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 2018, 30, 1706390.
[79]
Xu, J.; Wu, H. C.; Zhu, C. X.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S. H.; Molina-Lopez, F.; Gu, X. D.; Luo, S. C. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 2019, 18, 594-601.
[80]
Worfolk, B. J.; Andrews, S. C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. N. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138-14143.
[81]
Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287-9292.
[82]
Lu, X. F.; Wang, C.; Favier, F.; Pinna, N. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance. Adv. Energy Mater. 2017, 7, 1601301.
[83]
Long, Y. Z.; Li, M. M.; Gu, C. Z.; Wan, M. X.; Duvail, J. L.; Liu, Z. W.; Fan, Z. Y. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011, 36, 1415-1442.
[84]
Shin, M.; Song, J. H.; Lim, G. H.; Lim, B.; Park, J. J.; Jeong, U. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 2014, 26, 3706-3711.
[85]
Park, H.; Lee, S. J.; Kim, S.; Ryu, H. W.; Lee, S. H.; Choi, H. H.; Cheong, I. W.; Kim, J. H. Conducting polymer nanofiber mats via combination of electrospinning and oxidative polymerization. Polymer 2013, 54, 4155-4160.
[86]
Xue, M. Q.; Li, F. W.; Chen, D.; Yang, Z. H.; Wang, X. W.; Ji, J. H. High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv. Mater. 2016, 28, 8265-8270.
[87]
Choi, I. Y.; Lee, J.; Ahn, H.; Lee, J.; Choi, H. C.; Park, M. J. High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew. Chem., Int. Ed. 2015, 54, 10497-10501.
[88]
Barpuzary, D.; Kim, K.; Park, M. J. Two-dimensional growth of large-area conjugated polymers on ice surfaces: High conductivity and photoelectrochemical applications. ACS Nano 2019, 13, 3953-3963.
[89]
Feig, V. R.; Tran, H.; Lee, M.; Bao, Z. N. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 2018, 9, 2740.
[90]
Guan, Y. S.; Thukral, A.; Zhang, S.; Sim, K.; Wang, X.; Zhang, Y. C.; Ershad, F.; Rao, Z.; Pan, F. J.; Wang, P. et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 2020, 6, eabb3656.
[91]
Hinckley, A. C.; Andrews, S. C.; Dunham, M. T.; Sood, A.; Barako, M. T.; Schneider, S.; Toney, M. F.; Goodson, K. E.; Bao, Z. N. Achieving high thermoelectric performance and metallic transport in solvent-sheared PEDOT:PSS. Adv. Electron. Mater. 2021, 7, 2001190.
[92]
Zhao, Y. S.; Zhang, B. Z.; Yao, B. W.; Qiu, Y.; Peng, Z. H.; Zhang, Y. C.; Alsaid, Y.; Frenkel, I.; Youssef, K.; Pei, Q. B. et al. Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 2020, 3, 1196-1210.
[93]
Wang, X. W.; Xiong, Z. P.; Liu, Z.; Zhang, T. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 2015, 27, 1370-1375.
[94]
Wang, Z. Y.; Wang, T.; Zhuang, M. D.; Xu, H. X. Stretchable polymer composite with a 3D segregated structure of PEDOT:PSS for multifunctional touchless sensing. ACS Appl. Mater. Interfaces 2019, 11, 45301-45309.
[95]
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.
[96]
Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165.
[97]
Zhai, D. Y.; Liu, B. R.; Shi, Y.; Pan, L. J.; Wang, Y. Q.; Li, W. B.; Zhang, R.; Yu, G. H. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540-3546.
[98]
Li, L. L.; Wang, Y. Q.; Pan, L. J.; Shi, Y.; Cheng, W.; Shi, Y.; Yu, G. H. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 2015, 15, 1146-1151.
[99]
Zhang, S. M.; Chen, Y. H.; Liu, H.; Wang, Z. T.; Ling, H. N.; Wang, C. S.; Ni, J. H.; Çelebi-Saltik, B.; Wang, X. C.; Meng, X.; Kim, H. J. et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv. Mater. 2020, 32, 1904752.
[100]
Bihar, E.; Roberts, T.; Saadaoui, M.; Hervé, T.; De Graaf, J. B.; Malliaras, G. G. Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography. Adv. Healthc. Mater. 2017, 6, 1601167.
[101]
Feig, V. R.; Tran, H.; Lee, M.; Liu, K.; Huang, Z. J.; Beker, L.; Mackanic, D. G.; Bao, Z. N. An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels. Adv. Mater. 2019, 31, 1902869.
[102]
Bao, Z. N.; Chen, X. D. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177-4179.
[103]
Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.
[104]
Kang, J.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144-150.
[105]
Chen, D.; Pei, Q. B. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239-11268.
[106]
Shih, B.; Shah, D.; Li, J. X.; Thuruthel, T. G.; Park, Y. L.; Iida, F.; Bao, Z. N.; Kramer-Bottiglio, R.; Tolley, M. T. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 2020, 5, eaaz9239.
[107]
Zaia, E. W.; Gordon, M. P.; Yuan, P. Y.; Urban, J. J. Progress and perspective: Soft thermoelectric materials for wearable and internet-of-things applications. Adv. Electron. Mater. 2019, 5, 1800823.
[108]
Tran, H.; Feig, V. R.; Liu, K.; Zheng, Y.; Bao, Z. N. Polymer chemistries underpinning materials for skin-inspired electronics. Macromolecules 2019, 52, 3965-3974.
[109]
Son, D.; Bao, Z. N. Nanomaterials in skin-inspired electronics: Toward soft and robust skin-like electronic nanosystems. ACS Nano 2018, 12, 11731-11739.
[110]
Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614-9635.
[111]
Rao, Z.; Ershad, F.; Almasri, A.; Gonzalez, L.; Wu, X. Y.; Yu, C. J. Soft electronics for the skin: From health monitors to human-machine interfaces. Adv. Mater. Technol. 2020, 5, 2000233.
[112]
Feiner, R.; Dvir, T. Tissue-electronics interfaces: From implantable devices to engineered tissues. Nat. Rev. Mater. 2018, 3, 17076.
[113]
Liu, Y. X.; Liu, J.; Chen, S. C.; Lei, T.; Kim, Y.; Niu, S. M.; Wang, H. L.; Wang, X.; Foudeh, A. M.; Tok, J. B. H. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 2019, 3, 58-68.
[114]
Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.
Nano Research
Pages 3112-3125
Cite this article:
Wang T, Bao Y, Zhuang M, et al. Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano Research, 2021, 14(9): 3112-3125. https://doi.org/10.1007/s12274-021-3515-8
Topics:
Part of a topical collection:

733

Views

17

Crossref

15

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 26 December 2020
Revised: 10 April 2021
Accepted: 12 April 2021
Published: 11 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return