AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production

Ling Yuan1Chaoqi Zhang1Jing Wang1Chao Liu1( )Chengzhong Yu1,2( )
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
Show Author Information

Graphical Abstract

Abstract

Design of metal-free photocatalysts with customized chemical structure and nano-architecture is promising for photocatalytic hydrogen peroxide (H2O2) production. Herein, for the first time, mesoporous resorcinol-formaldehyde (MRF) nanobowls with optimized benzenoid-quinoid donor-acceptor (D-A) couples have been synthesized via an assembly-hydrothermal-etching process as high-performance photocatalysts for H2O2 production in a sacrificial agent-free system. At the hydrothermal temperature of ~ 250 °C, MRF-250 exhibits optimized structural features including a large surface area, suitable D-A couple ratio, enhanced light absorption, charge-hole separation and mass transfer. Thus, MRF-250 shows an unexpected H2O2 yield of 19.4 mM·g-1·h-1 in pure water, outperforming other RF samples prepared under different conditions and superior to most reported metal-free photocatalysts without the aid of sacrificial agents. Our work paves the way towards the elaborate design of highly effective metal-free photocatalysts for H2O2 production.

Electronic Supplementary Material

Download File(s)
12274_2021_3517_MOESM1_ESM.pdf (2.6 MB)

References

[1]
Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605-6631.
[2]
Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.
[3]
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962-6984.
[4]
Cai, J. S.; Huang, J. Y.; Wang, S. C.; Iocozzia, J.; Sun, Z. T.; Sun, J. Y.; Yang, Y. K.; Lai, Y. K.; Lin, Z. Q. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 2019, 31, 1806314.
[5]
Kim, H. I.; Choi, Y.; Hu, S.; Choi, W.; Kim, J. H. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl. Catal. B: Environ. 2018, 229, 121-129.
[6]
Edwards, J. K.; Solsona, B.; Ntainjua, N. E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 2009, 323, 1037-1041.
[7]
Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.
[8]
Edwards, J. K.; Ntainjua N. E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO2. Angew. Chem., Int. Ed. 2009, 48, 8512-8515.
[9]
Wang, K. F.; Shao, D. K.; Zhang, L.; Zhou, Y. Y.; Wang, H. P.; Wang, W. Z. Efficient piezo-catalytic hydrogen peroxide production from water and oxygen over graphitic carbon nitride. J. Mater. Chem. A 2019, 7, 20383-20389.
[10]
Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.
[11]
Zhang, P.; Tong, Y. W.; Liu, Y.; Vequizo, J. J. M.; Sun, H. W.; Yang, C.; Yamakata, A.; Fan, F. T.; Lin, W.; Wang, X. C. et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew. Chem., Int. Ed. 2020, 59, 16209-16217.
[12]
Yang, Y.; Zeng, G. M.; Huang, D. L.; Zhang, C.; He, D. H.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Li, X. P.; Li, B. S. et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl. Catal. B: Environ. 2020, 272, 118970.
[13]
Chen, L.; Wang, L.; Wan, Y. Y.; Zhang, Y.; Qi, Z. M.; Wu, X. J.; Xu, H. X. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Adv. Mater. 2020, 32, 1904433.
[14]
Gogoi, S.; Karak, N. Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst. Nano-Micro Lett. 2017, 9, 40.
[15]
Hou, W. C.; Wang, Y. S. Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight. ACS Sustainable Chem. Eng. 2017, 5, 2994-3001.
[16]
Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem., Int. Ed. 2014, 53, 9240-9245.
[17]
Zhang, J. S.; Wang, X. C. Solar water splitting at λ = 600 nm: A step closer to sustainable hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 7230-7232.
[18]
Wang, Y. O.; Silveri, F.; Bayazit, M. K.; Ruan, Q. S.; Li, Y. M.; Xie, J. J.; Catlow, C. R. A.; Tang, J. W. Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv. Energy Mater. 2018, 8, 1801084.
[19]
Zeng, X. K.; Liu, Y.; Kang, Y.; Li, Q. Y.; Xia, Y.; Zhu, Y. L.; Hou, H. L.; Uddin, M. H.; Gengenbach, T. R.; Xia, D. H. et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal. 2020, 10, 3697-3706.
[20]
Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774-780.
[21]
Fu, Y. J.; Liu, C. A.; Zhang, M. L.; Zhu, C.; Li, H.; Wang, H. B.; Song, Y. X.; Huang, H.; Liu, Y.; Kang, Z. H. Photocatalytic H2O2 and H2 generation from living Chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv. Energy Mater. 2018, 8, 1802525.
[22]
Zhao, F. W.; Wang, C. R.; Zhan, X. W. Morphology control in organic solar cells. Adv. Energy Mater. 2018, 8, 1703147.
[23]
Dang, D. F.; Yu, D. H.; Wang, E. G. Conjugated donor-acceptor terpolymers toward high-efficiency polymer solar cells. Adv. Mater. 2019, 31, 1807019.
[24]
Kang, T. E.; Kim, K. H.; Kim, B. J. Design of terpolymers as electron donors for highly efficient polymer solar cells. J. Mater. Chem. A 2014, 2, 15252-15267.
[25]
Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985-993.
[26]
Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv. Energy Mater. 2020, 10, 1900375.
[27]
Zhang, H. W.; Noonan, O.; Huang, X. D.; Yang, Y. N.; Xu, C.; Zhou, L.; Yu, C. Z. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579-4586.
[28]
Wei, Z.; Liu, M. L.; Zhang, Z. J.; Yao, W. Q.; Tan, H. W.; Zhu, Y. F. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 2018, 11, 2581-2589.
[29]
Wang, N.; Cheng, G.; Guo, L. P.; Tan, B.; Jin, S. B. Hollow covalent triazine frameworks with variable shell thickness and morphology. Adv. Funct. Mater. 2019, 29, 1904781.
[30]
Liebscher, J.; Mrówczyński, R.; Scheidt, H. A.; Filip, C.; Hădade, N. D.; Turcu, R.; Bende, A.; Beck, S. Structure of polydopamine: A never-ending story? Langmuir 2013, 29, 10539-10548.
[31]
del Valle, M. A.; Herrera, F. V.; Díaz, F. R.; Capurro, C.; Durán, M.; East, G. A. Electropolymerization of N-vinylcarbazole in the presence of Galvinoxyl. Polym. Bul. 2006, 57, 321-328.
[32]
Wang, X.; Lu, L. L.; Yu, Z. L.; Xu, X. W.; Zheng, Y. R.; Yu, S. H. Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties. Angew. Chem., Int. Ed. 2015, 54, 2397-2401.
[33]
Mulik, S.; Sotiriou-Leventis, C.; Leventis, N. Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem. Mater. 2007, 19, 6138-6144.
[34]
Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.
[35]
Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 2015, 5, 3058-3066.
[36]
Wang, Y. B.; Meng, D.; Zhao, X. Visible-light-driven H2O2 production from O2 reduction with nitrogen vacancy-rich and porous graphitic carbon nitride. Appl. Catal. B: Environ. 2020, 273, 119064.
[37]
Moon, G. H.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X. C.; Choi, W. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal. 2017, 7, 2886-2895.
[38]
Li, S. N.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B: Environ. 2016, 190, 26-35.
[39]
Xiong, J.; Li, X. B.; Huang, J. T.; Gao, X. M.; Chen, Z.; Liu, J. Y.; Li, H.; Kang, B. B.; Yao, W. Q.; Zhu, Y. F. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B: Environ. 2020, 266, 118602.
[40]
Samanta, S.; Yadav, R.; Kumar, A.; Sinha, A. K.; Srivastava, R. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl. Catal. B: Environ. 2019, 259, 118054.
[41]
Zhou, L.; Feng, J. R.; Qiu, B. C.; Zhou, Y.; Lei, J. Y.; Xing, M. Y.; Wang, L. Z.; Zhou, Y. B.; Liu, Y. D.; Zhang, J. L. Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Appl. Catal. B: Environ. 2020, 267, 118396.
Nano Research
Pages 3267-3273
Cite this article:
Yuan L, Zhang C, Wang J, et al. Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production. Nano Research, 2021, 14(9): 3267-3273. https://doi.org/10.1007/s12274-021-3517-6
Topics:
Part of a topical collection:

850

Views

48

Crossref

42

Web of Science

43

Scopus

5

CSCD

Altmetrics

Received: 16 January 2021
Revised: 11 March 2021
Accepted: 12 April 2021
Published: 04 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return