AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure

Juntong Zhu1,3Hao Wang2( )Liang Ma1Guifu Zou1( )
College of Energy,Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University,Suzhou,215006,China;
Research Institute of Superconductor Electronics,Nanjing University,Nanjing,210023,China;
School of Physical Sciences,University of Chinese Academy of Sciences,Beijing,100190,China;
Show Author Information

Graphical Abstract

Abstract

Two-dimensional materials have been demonstrated as promising toolboxes for optoelectronics. Transition metal carbides and nitrides (MXenes), members of an emerging family of two-dimensional materials, have drawn extensive attention in optoelectronics owing to their excellent conductivity and tunable electronic properties. Herein, a photodetector based on the two-dimensional van der Waals heterostructure of Ti3C2Tx MXene and a MoS2 monolayer was constructed to observe the ambipolar photoresponse, which showed a positive photoresponse in the visible spectrum (500–700 nm) and a negative photoresponse at longer wavelengths (700–800 nm). The device exhibited a high negative responsivity of 1.9 A/W and a detectivity of 2.1 × 1010 Jones under 750 nm light illumination. Detailed experiments demonstrate that the negative photoresponse arises from the heterostructure- induced trap energy level, which confines the excited photoelectrons and leads to an inverse current. This work demonstrates a unique optoelectronic phenomenon in MoS2/MXene heterostructures and provides valuable insights into the development of new photodetection materials.

Electronic Supplementary Material

Download File(s)
12274_2021_3518_MOESM1_ESM.pdf (1.9 MB)

References

1

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

2

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

3

Dankert, A.; Venkata Kamalakar, M.; Wajid, A. Patel, R. S.; Dash, P. S. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Res. 2015, 8, 1357-1364.

4

Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711-717.

5

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.

6

Wang, H.; Xiao, X.; Liu, S. Y.; Chiang, C. L.; Kuai, X. X.; Peng, C. K.; Lin, Y. C.; Meng, X.; Zhao, J. Q.; Choi, J. et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578-18584.

7

Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high- performance anodes for sodium-ion batteries. Angew. Chem. , Int. Ed. 2014, 53, 12794-12798.

8

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

9

Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.

10

Xu, J.; Shim, J.; Park, J. H.; Lee, S. MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 2016, 26, 5328-5334.

11

Xu, H.; Han, X. Y.; Dai, X.; Liu, W.; Wu, J.; Zhu, J. T.; Kim, D.; Zou, G. F.; Sablon, K. A.; Sergeev, A. et al. High detectivity and transparent few-layer MoS2/Glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561.

12

Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053-1059.

13

Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692-699.

14

Li, D.; Zhu, C. G.; Liu, H. W.; Sun, X. X.; Zheng, B. Y.; Liu, Y.; Liu, Y.; Wang, X. W.; Zhu, X. L.; Wang, X. et al. Light-triggered two- dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. Sci. Bull. 2020, 65, 293-299.

15

Wang, Y.; Liu, E. F.; Gao, A. Y.; Cao, T. J.; Long, M. S.; Pan, C.; Zhang, L. L.; Zeng, J. W.; Wang, C. Y.; Hu, W. D. et al. Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 2018, 12, 9513-9520.

16

Wang, H.; Li, J. M.; Kuai, X. X.; Bu, L. M.; Gao, L. J.; Xiao, X.; Gogotsi, Y. Enhanced rate capability of ion-accessible Ti3C2Tx-NbN hybrid electrodes. Adv. Energy Mater. 2020, 10, 2001411.

17

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446-450.

18

Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate- functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149-4168.

19

Hantanasirisakul, K.; Zhao, M. Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2016, 2, 1600050.

20

Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z, K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196-202.

21

Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.

22

Kang, Z.; Ma, Y.; Tan, X.; Zhu, M.; Zheng, Z.; Liu, N.; Li, L.; Zou, Z.; Jiang, X.; Zhai, T. MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 2017, 3, 1700165.

23

Wu, Y. T.; Nie, P.; Jiang, J. M.; Ding, B.; Dou, H.; Zhang, X. G. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high- performance anodes for sodium-ion batteries. ChemElectroChem 2017, 4, 1560-1565.

24

Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. , Int. Ed. 2018, 57, 1846-1850.

25

Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659-1667.

26

Han, M. K.; Yin, X. W.; Wu, H.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011-21019.

27

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676-11685.

28

Zhu, J. T.; Xu, H.; Zou, G. F.; Zhang, W.; Chai, R. Q.; Choi, J.; Wu, J. Y.; Liu, H. Y.; Shen, G. Z.; Fan, H. Y. MoS2-OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 2019, 141, 5392-5401.

29

Zhu, J. T.; Li, W.; Huang, R.; Ma, L.; Sun, H. M.; Choi, J. H.; Zhang, L. Q.; Cui, Y.; Zou, G. F. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 2020, 142, 16276-16284.

30

Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744-8765.

31

Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

32

Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev. 2018, 12, 1700229.

33

Wei, Z.; Wang, Q. Q.; Li, L.; Yang, R.; Zhang, G. Y. Monolayer MoS2 epitaxy. Nano Res. 2021, 14, 1598-1608.

34

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086-4093.

35

Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162-4168.

36

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

37

Hu, M. M.; Li, Z. J.; Hu, T.; Zhu, S. H.; Zhang, C.; Wang, X. H. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 2016, 10, 11344-11350.

38

Komsa, H. P.; Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B. 2013, 88, 085318.

39

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.

40

Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 2015, 15, 2992-2997.

41

Han, Y. X.; Fu, M. Q.; Tang, Z. Q.; Zheng, X.; Ji, X. H.; Wang, X. Y.; Lin, W. J.; Yang, T.; Chen, Q. Switching from negative to positive photoconductivity toward intrinsic photoelectric response in InAs nanowire. ACS Appl. Mater. Interfaces 2017, 9, 2867-2874.

42

Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612-619.

43

Cun, H. Y.; Macha, M.; Kim, H.; Liu, K.; Zhao, Y. F.; LaGrange, T.; Kis, A.; Radenovic, A. Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 2019, 12, 2646-2652.

44

Eginligil, M.; Cao, B. C.; Wang, Z. L.; Shen, X. N.; Cong, C. X.; Shang, J. Z.; Soci, C.; Yu, T. Dichroic spin-valley photocurrent in monolayer molybdenum disulphide. Nat. Commun. 2015, 6, 7636.

45

Nie, C. B.; Yu, L. Y.; Wei, X. Z.; Shen, J.; Lu, W. Q.; Chen, W. M.; Feng, S. L.; Shi, H. F. Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 2017, 28, 275203.

46

Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S. et al. Dye-sensitized MoS2 photo-detector with enhanced spectral photoresponse. ACS Nano 2014, 8, 8285-8291.

47

Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832-5836.

48

Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.

49

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.

50

Li, H. D.; Alradhi, H.; Jin, Z. M.; Anyebe, E. A.; Sanchez, A. M.; Linhart, W. M.; Kudrawiec, R.; Fang, H. H.; Wang, Z. M.; Hu, W. D. et al. Novel type-Ⅱ InAs/AlSb core-shell nanowires and their enhanced negative photocurrent for efficient photodetection. Adv. Funct. Mater. 2018, 28, 1705382.

51

Zhang, X. T.; Huang, H.; Yao, X. M.; Li, Z. Y.; Zhou, C.; Zhang, X.; Chen, P.; Fu, L.; Zhou, X. H.; Wang, J. L. et al. Ultrasensitive mid- wavelength infrared photodetection based on a single InAs nanowire. ACS Nano 2019, 13, 3492-3499.

Nano Research
Pages 3416-3422
Cite this article:
Zhu J, Wang H, Ma L, et al. Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Research, 2021, 14(10): 3416-3422. https://doi.org/10.1007/s12274-021-3518-5
Topics:

892

Views

43

Crossref

41

Web of Science

40

Scopus

3

CSCD

Altmetrics

Received: 20 January 2021
Revised: 11 April 2021
Accepted: 12 April 2021
Published: 11 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return