Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional materials have been demonstrated as promising toolboxes for optoelectronics. Transition metal carbides and nitrides (MXenes), members of an emerging family of two-dimensional materials, have drawn extensive attention in optoelectronics owing to their excellent conductivity and tunable electronic properties. Herein, a photodetector based on the two-dimensional van der Waals heterostructure of Ti3C2Tx MXene and a MoS2 monolayer was constructed to observe the ambipolar photoresponse, which showed a positive photoresponse in the visible spectrum (500–700 nm) and a negative photoresponse at longer wavelengths (700–800 nm). The device exhibited a high negative responsivity of 1.9 A/W and a detectivity of 2.1 × 1010 Jones under 750 nm light illumination. Detailed experiments demonstrate that the negative photoresponse arises from the heterostructure- induced trap energy level, which confines the excited photoelectrons and leads to an inverse current. This work demonstrates a unique optoelectronic phenomenon in MoS2/MXene heterostructures and provides valuable insights into the development of new photodetection materials.
Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
Dankert, A.; Venkata Kamalakar, M.; Wajid, A. Patel, R. S.; Dash, P. S. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Res. 2015, 8, 1357-1364.
Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711-717.
Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.
Wang, H.; Xiao, X.; Liu, S. Y.; Chiang, C. L.; Kuai, X. X.; Peng, C. K.; Lin, Y. C.; Meng, X.; Zhao, J. Q.; Choi, J. et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578-18584.
Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high- performance anodes for sodium-ion batteries. Angew. Chem. , Int. Ed. 2014, 53, 12794-12798.
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.
Xu, J.; Shim, J.; Park, J. H.; Lee, S. MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 2016, 26, 5328-5334.
Xu, H.; Han, X. Y.; Dai, X.; Liu, W.; Wu, J.; Zhu, J. T.; Kim, D.; Zou, G. F.; Sablon, K. A.; Sergeev, A. et al. High detectivity and transparent few-layer MoS2/Glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561.
Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053-1059.
Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692-699.
Li, D.; Zhu, C. G.; Liu, H. W.; Sun, X. X.; Zheng, B. Y.; Liu, Y.; Liu, Y.; Wang, X. W.; Zhu, X. L.; Wang, X. et al. Light-triggered two- dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. Sci. Bull. 2020, 65, 293-299.
Wang, Y.; Liu, E. F.; Gao, A. Y.; Cao, T. J.; Long, M. S.; Pan, C.; Zhang, L. L.; Zeng, J. W.; Wang, C. Y.; Hu, W. D. et al. Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 2018, 12, 9513-9520.
Wang, H.; Li, J. M.; Kuai, X. X.; Bu, L. M.; Gao, L. J.; Xiao, X.; Gogotsi, Y. Enhanced rate capability of ion-accessible Ti3C2Tx-NbN hybrid electrodes. Adv. Energy Mater. 2020, 10, 2001411.
Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446-450.
Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate- functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149-4168.
Hantanasirisakul, K.; Zhao, M. Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2016, 2, 1600050.
Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z, K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196-202.
Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.
Kang, Z.; Ma, Y.; Tan, X.; Zhu, M.; Zheng, Z.; Liu, N.; Li, L.; Zou, Z.; Jiang, X.; Zhai, T. MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 2017, 3, 1700165.
Wu, Y. T.; Nie, P.; Jiang, J. M.; Ding, B.; Dou, H.; Zhang, X. G. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high- performance anodes for sodium-ion batteries. ChemElectroChem 2017, 4, 1560-1565.
Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. , Int. Ed. 2018, 57, 1846-1850.
Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659-1667.
Han, M. K.; Yin, X. W.; Wu, H.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011-21019.
Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676-11685.
Zhu, J. T.; Xu, H.; Zou, G. F.; Zhang, W.; Chai, R. Q.; Choi, J.; Wu, J. Y.; Liu, H. Y.; Shen, G. Z.; Fan, H. Y. MoS2-OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 2019, 141, 5392-5401.
Zhu, J. T.; Li, W.; Huang, R.; Ma, L.; Sun, H. M.; Choi, J. H.; Zhang, L. Q.; Cui, Y.; Zou, G. F. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 2020, 142, 16276-16284.
Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744-8765.
Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev. 2018, 12, 1700229.
Wei, Z.; Wang, Q. Q.; Li, L.; Yang, R.; Zhang, G. Y. Monolayer MoS2 epitaxy. Nano Res. 2021, 14, 1598-1608.
Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086-4093.
Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162-4168.
Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
Hu, M. M.; Li, Z. J.; Hu, T.; Zhu, S. H.; Zhang, C.; Wang, X. H. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 2016, 10, 11344-11350.
Komsa, H. P.; Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B. 2013, 88, 085318.
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 2015, 15, 2992-2997.
Han, Y. X.; Fu, M. Q.; Tang, Z. Q.; Zheng, X.; Ji, X. H.; Wang, X. Y.; Lin, W. J.; Yang, T.; Chen, Q. Switching from negative to positive photoconductivity toward intrinsic photoelectric response in InAs nanowire. ACS Appl. Mater. Interfaces 2017, 9, 2867-2874.
Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612-619.
Cun, H. Y.; Macha, M.; Kim, H.; Liu, K.; Zhao, Y. F.; LaGrange, T.; Kis, A.; Radenovic, A. Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 2019, 12, 2646-2652.
Eginligil, M.; Cao, B. C.; Wang, Z. L.; Shen, X. N.; Cong, C. X.; Shang, J. Z.; Soci, C.; Yu, T. Dichroic spin-valley photocurrent in monolayer molybdenum disulphide. Nat. Commun. 2015, 6, 7636.
Nie, C. B.; Yu, L. Y.; Wei, X. Z.; Shen, J.; Lu, W. Q.; Chen, W. M.; Feng, S. L.; Shi, H. F. Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 2017, 28, 275203.
Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S. et al. Dye-sensitized MoS2 photo-detector with enhanced spectral photoresponse. ACS Nano 2014, 8, 8285-8291.
Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832-5836.
Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.
Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.
Li, H. D.; Alradhi, H.; Jin, Z. M.; Anyebe, E. A.; Sanchez, A. M.; Linhart, W. M.; Kudrawiec, R.; Fang, H. H.; Wang, Z. M.; Hu, W. D. et al. Novel type-Ⅱ InAs/AlSb core-shell nanowires and their enhanced negative photocurrent for efficient photodetection. Adv. Funct. Mater. 2018, 28, 1705382.
Zhang, X. T.; Huang, H.; Yao, X. M.; Li, Z. Y.; Zhou, C.; Zhang, X.; Chen, P.; Fu, L.; Zhou, X. H.; Wang, J. L. et al. Ultrasensitive mid- wavelength infrared photodetection based on a single InAs nanowire. ACS Nano 2019, 13, 3492-3499.