AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanofiber-based transparent film with controllable optical transparency adjustment function for versatile bionic applications

Wen Wang1Shuang Wang1Chenxue Xiang2Dan Xue2Mufang Li1Qiongzhen Liu1Longhai Piao3( )Dong Wang1,2( )
College of Materials Science and Engineering Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Wuhan 430200 China
College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
Department of Chemistry Kongju National University Chungna 32588 Republic of Korea
Show Author Information

Graphical Abstract

Abstract

As a new favorite in the field of smart materials, smart windows, with visual stimulus sensing functions, have attracted extensive attention for their high transparency, sensitive response to environmental stimulus, and reversible changes in light transmittance. In this paper, the PVA-co-PE nanofiber film, which was completely opaque like paper, was used as filling phase and reacted with water-soluble N-vinyl-2-pyrrolidone (NVP) by photopolymerization to produce a flexible transparency polyvinyl pyrrolidone/ spraying PVA-co-PE nanofiber films (PVP/SPNFs) composite film. Among them, the small size effect of PVA-co-PE nanofibers played a pivotal role in improving the film's transparency. Nevertheless, the PVP's reversible adsorption–desorption behavior of water molecules made its refractive index change dynamically and reversibly, which led to the visual transition of composite film from transparent to opaque just like that of electronic smart windows. Additionally, the reversible transition rate of film's transparency can be effectively regulated by the nanofiber stack structure. This new design of transparency visualization transforms composite film in response to humidity, innovates the electrically controlled smart windows on energy and realizes the effective utilization of natural resources such as water and humidity, which has a great application prospect in the field of flexible optoelectronic devices, intelligent buildings, and smart writing.

Electronic Supplementary Material

Video
12274_2021_3521_MOESM2_ESM.avi
Download File(s)
12274_2021_3521_MOESM1_ESM.pdf (2.4 MB)

References

1

Lee, S. G.; Lee, D. Y.; Lim, H. S.; Lee, D. H.; Lee, S.; Cho, K. Switchable transparency and wetting of elastomeric smart windows. Adv. Mater. 2010, 22, 5013–5017.

2

Bechinger, C.; Ferrere, S.; Zaban, A.; Sprague, J.; Gregg, B. A. Photoelectrochromic windows and displays. Nature 1996, 383, 608–610.

3

Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320.

4

Granqvist, C. G. Oxide electrochromics: An introduction to devices and materials. Sol. Energy Mater. Sol. Cells 2012, 99, 1–13.

5

Granqvist, C. G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38.

6

Lampert, C. M. Chromogenic smart materials. Mater. Today 2004, 7, 28–35.

7

Liu, F.; Cao, H.; Ji, P. F.; Liu, K. Q.; Ellahi, M.; Yang, Z.; Yang, H. Preparation and electro-optical properties of polyurethane matrix based polymer dispersed liquid crystal films. Chin. J. Liq. Cryst. Displays 2013, 28, 1–6.

8

Woo, J. Y.; Kim, B. K. Surfactant effects on morphology and switching of holographic PDLCs based on polyurethane acrylates. Chem. Phys. Chem. 2007, 8, 175–180.

9

Bathelt, R.; Buchhauser, D.; Gärditz, C.; Paetzold, R.; Wellmann, P. Light extraction from OLEDs for lighting applications through light scattering. Org. Electron. 2007, 8, 293–299.

10

Granqvist, C. G.; Green, S.; Niklasson, G. A.; Mlyuka, N. R.; von Kræmer, S.; Georén, P. Advances in chromogenic materials and devices. Thin Solid Films 2010, 518, 3046–3053.

11

Granqvist, C. G. Chromogenic windows. In Adaptive, Active and Multifunctional Smart Materials Systems. 2013; pp 108–117.

12

Hernandez, T. S.; Barile, C. J.; Strand, M. T.; Dayrit, T. E.; Slotcavage, D. J.; McGehee, M. D. Bistable black electrochromic windows based on the reversible metal electrodeposition of Bi and Cu. ACS Energy Lett. 2018, 3, 104–111.

13

Barile, C. J.; Slotcavage, D. J.; Hou, J. Y.; Strand, M. T.; Hernandez, T. S.; McGehee, M. D. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 2017, 1, 133–145.

14

Barclay, D. J.; Bird, C. L.; Martin, D. H. Speed considerations for electrochromic displays. J. Electron. Mater. 1979, 8, 311–331.

15

Sohn, K. S.; Timilsina, S.; Singh, S. P.; Lee, J. W.; Kim, J. S. A mechanoluminescent ZnS: Cu/Rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: Red-light emission and a standardized strain quantification. ACS Appl. Mater. Interfaces 2016, 8, 34777–34783.

16

Shin, S. W.; Oh, J. P.; Hong, C. W.; Kim, E. M.; Woo, J. J.; Heo, G. S.; Kim, J. H. Origin of mechanoluminescence from Cu-Doped ZnS particles embedded in an elastomer film and its application in flexible electro-mechanoluminescent lighting devices. ACS Appl. Mater. Interfaces 2016, 8, 1098–1103.

17

Jeong, S. M.; Song, S.; Joo, K. I.; Kim, J.; Hwang, S. H.; Jeong, J.; Kim, H. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 2014, 7, 3338–3346.

18

Onodera, R.; Seki, Y.; Seki, S.; Yamada, K.; Sawada, Y.; Uchida, T. Smart windows, switchable between transparent, mirror, and black states, fabricated using rough and smooth indium tin oxide films deposited by spray chemical vapor deposition. Appl. Phys. Express 2013, 6, 026503.

19

Moon, H. C.; Lodge, T. P.; Frisbie, C. D. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J. Am. Chem. Soc. 2014, 136, 3705–3712.

20

Iba, H.; Chang, T.; Kagawa, Y. Optically transparent continuous glass fibre-reinforced epoxy matrix composite: Fabrication, optical and mechanical properties. Compos. Sci. Technol. 2002, 62, 2043–2052.

21

Meng, L. J.; Niu, F. H.; Deng, P. J.; Li, N.; Lv, Y.; Huang, M. H. Electrospun nanofiber supports with bio-inspired modification enabled high-performance forward osmosis composite membranes. Compos. Commun. 2020, 22, 100473.

22

Ren, H. W.; Xu, S.; Wu, S. T. Gradient polymer network liquid crystal with a large refractive index change. Opt. Express 2012, 20, 26464–26472.

23

Kang, S.; Lin, H.; Day, D. E.; Stoffer, J. O. Optically transparent polymethyl methacrylate composites made with glass fibers of varying refractive index. J. Mater. Res. 1997, 12, 1091–1101.

24

Krug, D. J., III; Asuncion, M. Z.; Popova, V.; Laine, R. M. Transparent fiber glass reinforced composites. Compos. Sci. Technol. 2013, 77, 95–100.

25

Novak, B. M. Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv. Mater. 1993, 5, 422–433.

26

Nogi, M.; Yano, H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 2008, 20, 1849–1852.

27

Cho, A. R.; Kim, S. H.; Lee, E. W.; Gwak, G.; Jang, J.; Park, L. S. Flexible OLED fabricated on glass fabric reinforced film and performance. Mol. Cryst. Liq. Cryst. 2014, 602, 26–33.

28

Lim, Y. W.; Kwon, O. E.; Kang, S. M.; Cho, H.; Lee, J.; Park, Y. S.; Cho, N. S.; Jin, W. Y.; Lee, J.; Lee, H. et al. Built haze glass fabric reinforced siloxane hybrid film for efficient organic light emitting diodes (OLEDs). Adv. Funct. Mater. 2018, 28, 1802944.

29

Lee, C. H.; Lim, H. S.; Kim, J.; Cho, J. H. Counterion-induced reversibly switchable transparency in smart windows. ACS Nano 2011, 5, 7397–7403.

30

Wang, D.; Sun, G.; Chiou, B. S. A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol. Mater. Eng. 2007, 292, 407–414.

31

Xue, D.; Wang, W.; Piao, L. H.; Li, M. F.; Wang, S.; Xiang, C. X.; Wang, D. PVA-co-PE nanofibers synergistically reinforced composite film with high transparency and flexibility. Compos. Commun. 2020, 20, 100371.

32

Toivonen, M. S.; Onelli, O. D.; Jacucci, G.; Lovikka, V.; Rojas, O. J.; Ikkala, O.; Vignolini, S. Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv. Mater. 2018, 30, 1704050.

33

Caseri, W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromol. Rapid Commun. 2000, 21, 705–722.

34

Xiong, B.; Zhong, W. B.; Zhu, Q.; Liu, K.; Li, M. F.; Sun, G.; Wang, D. Highly transparent and rollable PVA-co-PE nanofibers synergistically reinforced with epoxy film for flexible electronic devices. Nanoscale 2017, 9, 19216–19226.

Nano Research
Pages 564-572
Cite this article:
Wang W, Wang S, Xiang C, et al. Nanofiber-based transparent film with controllable optical transparency adjustment function for versatile bionic applications. Nano Research, 2022, 15(1): 564-572. https://doi.org/10.1007/s12274-021-3521-x
Topics:

866

Views

11

Crossref

11

Web of Science

11

Scopus

3

CSCD

Altmetrics

Received: 09 March 2021
Revised: 07 April 2021
Accepted: 13 April 2021
Published: 23 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return