Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Fluorinated and nitrogen-doped graphdiyne (F/N-GDY) have been used in the active layer of perovskite solar cells (PSCs) for the first time. The introduction of heteroatoms turns out to be an effective method for boosted solar cells performance, which increases by 32.8% and 33.0%, better than the pristine or GDY doped PSCs. The enhanced performance can be attributed firstly to the superiority of F/N-GDY originated from the unique structure and optoelectronic properties of GDY. Then, both can further reduce surface defects and improve surface and bulk crystallinity than pristine GDY. What's more, efficiency increase caused by F-GDY is mainly attributed to the improvement of fill factor (FF), while the higher short-circuit current (JSC) plays more important role by N-GDY doping. Most importantly, the detailed mechanism brought about by doping of F-GDY or N-GDY is expounded by systematical characterizations, especially the synchrotron radiation technique. Doping of F-GDY causes PbII+x and forms new Pb–F bonds between F-GDY and Pb ions. Doping of N-GDY or GDY brings about PbII-x (N-GDY doping induces more deviation than that of GDY due to the participation of imine N), improving its electron density and conductivity.
Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.
Jiang, Z. Y.; Zhang, W. J.; Ma, D. H.; Liu, H. X.; Yu, W.; Fan, Z. Q.; Zhang, Y. L.; Lu, C. Q.; Li, Y. Optimization of the photoelectric properties and photo-stability of CH3NH3PbBrxI3−x films for efficient planar perovskite solar cells. Superlattice. Microst. 2018, 113, 118–128.
Ge, C. N.; Chen, J.; Tang, S. L.; Du, Y. W.; Tang, N. J. Review of the electronic, optical, and magnetic properties of graphdiyne: From theories to experiments. ACS Appl. Mater. Interfaces 2019, 11, 2707–2716.
Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.
Zhao, Y. S.; Tang, H. J.; Yang, N. L.; Wang, D. Graphdiyne: Recent achievements in photo- and electrochemical conversion. Adv. Sci. 2018, 5, 1800959.
Kuang, C. Y.; Tang, G.; Jiu, T. G.; Yang, H.; Liu, H. B.; Li, B. R.; Luo, W. N.; Li, X. D.; Zhang, W. J.; Lu, F. S. et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Lett. 2015, 15, 2756–2762.
Li, J. S.; Zhao, M.; Zhao, C. J.; Jian, H. M.; Wang, N.; Yao, L. L.; Huang, C. S.; Zhao, Y. J.; Jiu, T. G. Graphdiyne-doped P3CT-K as an efficient hole-transport layer for MAPbI3 perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 2626–2631.
Li, J. S.; Jiu, T. G.; Duan, C. H.; Wang, Y.; Zhang, H. N.; Jian, H. M.; Zhao, Y. J.; Wang, N.; Huang, C. S.; Li, Y. L. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy 2018, 46, 331–337.
Li, M.; Wang, Z. K.; Kang, T.; Yang, Y. G.; Gao, X. Y.; Hsu, C. S.; Li, Y. L.; Liao, L. S. Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 2018, 43, 47–54.
Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943.
Li, H. S.; Zhang, R.; Li, Y. S.; Li, Y. M.; Liu, H. B.; Shi, J. J.; Zhang, H. Y.; Wu, H. J.; Luo, Y. H.; Li, D. M. et al. Graphdiyne-based bulk heterojunction for efficient and moisture-stable planar perovskite solar cells. Adv. Energy Mater. 2018, 8, 1802012.
Zhang, X. S.; Wang, Q.; Jin, Z. W.; Chen, Y. H.; Liu, H. B.; Wang, J. Z.; Li, Y. L.; Liu, S. Z. Graphdiyne quantum dots for much improved stability and efficiency of perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1701117.
Li, J. S.; Wang, N.; Bi, F. Z.; Chen, S. Q.; Zhao, C. J.; Liu, L.; Yao, Q. T.; Huang, C. S.; Xue, Y. R.; Liu, H. B. et al. Inverted MAPbI3 perovskite solar cells with graphdiyne derivative-incorporated electron transport layers exceeding 20% efficiency. Sol. RRL 2019, 3, 1900241.
Chen, S. Q.; Pan, Q. Y.; Li, J. S.; Zhao, C. J.; Guo, X.; Zhao, Y. J.; Jiu, T. G. Grain boundary passivation with triazine-graphdiyne to improve perovskite solar cell performance. Sci. China Mater. 2020, 63, 2465– 2476.
Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.
Xiao, W. Q.; Kang, H. F.; Lin, Y. D.; Liang, M. X.; Li, J. X.; Huang, F.; Feng, Q.; Zheng, Y. P.; Huang, Z. G. Fluorinated graphdiyne as a significantly enhanced fluorescence material. RSC Adv. 2019, 9, 18377–18382.
Jia, Z. Y.; Li, Y. J.; Zuo, Z. C.; Liu, H. B.; Huang, C. S.; Li, Y. L. Synthesis and properties of 2D carbon-graphdiyne. Acc. Chem. Res. 2017, 50, 2470–2478.
Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 2017, 7, 5209–5213.
Zhang, S. L.; Du, H. P.; He, J. J.; Huang, C. S.; Liu, H. B.; Cui, G. L.; Li, Y. L. Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 8, 8467–8473.
He, J. J.; Wang, N.; Yang, Z.; Shen, X. Y.; Wang, K.; Huang, C. S.; Yi, Y. P.; Tu, Z. Y.; Li, Y. L. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy Environ. Sci. 2018, 11, 2893–2903.
Li, J. Q.; Xu, J.; Xie, Z. Q.; Gao, X.; Zhou, J. Y.; Xiong, Y.; Chen, C. G.; Zhang, J.; Liu, Z. F. Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application. Adv. Mater. 2018, 30, 1800548.
Shi, J. S.; Gao, Y. R.; Gao, X.; Zhang, Y.; Zhang, J. J.; Jing, X.; Shao, M. Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 2019, 31, 1901673.
Shao, F.; Qin, P.; Wang, D.; Zhang, G. Q.; Wu, B.; He, J. Q.; Peng, W.; Sum, T. C.; Wang, D. L.; Huang, F. Q. Enhanced photovoltaic performance and thermal stability of CH3NH3Pbl3 perovskite through lattice symmetrization. ACS Appl. Mater. Interfaces 2019, 11, 740–746.
Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.
Wang, N.; He, J. J.; Tu, Z. Y.; Yang, Z.; Zhao, F. H.; Li, X. D.; Huang, C. S.; Wang, K.; Jiu, T. G.; Yi, Y. P. et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage. Angew. Chem., Int. Ed. 2017, 56, 10740–10745.
Zheng, F.; Takenaka, H.; Wang, F. G.; Koocher, N. Z.; Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 2015, 6, 31–37.
Kim, S. G.; Chen, J. Z.; Seo, J. Y.; Kang, D. H.; Park, N. G. Rear-surface passivation by melaminium iodide additive for stable and hysteresis-less perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 25372–25383.
Hu, Y. Y.; Liu, Z. G.; Nam, K. W.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K. M.; Du, L. S. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136.
Liu, B.; Cui, R. L.; Huang, H.; Guo, X. H.; Dong, J. Q.; Yao, H. L.; Li, Y.; Zhao, D. G.; Wang, J. H.; Zhang, J. et al. Elucidating the mechanisms underlying PCBM enhancement of CH3NH3PbI3 perovskite solar cells using GIXRD and XAFS. J. Mater. Chem. A 2020, 8, 3145– 3153.
Liu, B.; Cui, R. L.; Huang, H.; Guo, X. H.; Zuo, S. W.; Dong, J. Q.; Yao, H. L.; Li, Y.; Zhao, D. G.; Wang, J. H. et al. Structure optimization of CH3NH3PbI3 by higher-valence Pb in perovskite solar cells with enhanced efficiency and stability. Solar Energy 2020, 205, 202–210.
McLeod, J. A.; Wu, Z. W.; Sun, B. Q.; Liu, L. J. The influence of the I/Cl ratio on the performance of CH3NH3PbI3−xClx-based solar cells: Why is CH3NH3I: PbCl2 = 3: 1 the "magic" ratio?. Nanoscale 2016, 8, 6361–6368.
Chen, S.; Shi, G. Q. Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 2017, 29, 1605448.
Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.