AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne

Huan Huang1,§Bing Liu1,3,§Dan Wang1,3Rongli Cui1Xihong Guo1Ying Li1,3Shouwei Zuo2,3Zi Yin2,3Huanhua Wang2Jing Zhang2( )Hui Yuan1Lirong Zheng2Baoyun Sun1( )
CAS Key Lab for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics Chinese Academy of Science Beijing 100049 China
Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
University of Chinese Academy of Sciences Beijing 100049 China

§ Huan Huang and Bing Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Fluorinated and nitrogen-doped graphdiyne (F/N-GDY) have been used in the active layer of perovskite solar cells (PSCs) for the first time. The introduction of heteroatoms turns out to be an effective method for boosted solar cells performance, which increases by 32.8% and 33.0%, better than the pristine or GDY doped PSCs. The enhanced performance can be attributed firstly to the superiority of F/N-GDY originated from the unique structure and optoelectronic properties of GDY. Then, both can further reduce surface defects and improve surface and bulk crystallinity than pristine GDY. What's more, efficiency increase caused by F-GDY is mainly attributed to the improvement of fill factor (FF), while the higher short-circuit current (JSC) plays more important role by N-GDY doping. Most importantly, the detailed mechanism brought about by doping of F-GDY or N-GDY is expounded by systematical characterizations, especially the synchrotron radiation technique. Doping of F-GDY causes PbII+x and forms new Pb–F bonds between F-GDY and Pb ions. Doping of N-GDY or GDY brings about PbII-x (N-GDY doping induces more deviation than that of GDY due to the participation of imine N), improving its electron density and conductivity.

Electronic Supplementary Material

Download File(s)
12274_2021_3522_MOESM1_ESM.pdf (14 MB)

References

1

Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.

2

Jiang, Z. Y.; Zhang, W. J.; Ma, D. H.; Liu, H. X.; Yu, W.; Fan, Z. Q.; Zhang, Y. L.; Lu, C. Q.; Li, Y. Optimization of the photoelectric properties and photo-stability of CH3NH3PbBrxI3−x films for efficient planar perovskite solar cells. Superlattice. Microst. 2018, 113, 118–128.

3

Ge, C. N.; Chen, J.; Tang, S. L.; Du, Y. W.; Tang, N. J. Review of the electronic, optical, and magnetic properties of graphdiyne: From theories to experiments. ACS Appl. Mater. Interfaces 2019, 11, 2707–2716.

4

Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

5

Zhao, Y. S.; Tang, H. J.; Yang, N. L.; Wang, D. Graphdiyne: Recent achievements in photo- and electrochemical conversion. Adv. Sci. 2018, 5, 1800959.

6

Kuang, C. Y.; Tang, G.; Jiu, T. G.; Yang, H.; Liu, H. B.; Li, B. R.; Luo, W. N.; Li, X. D.; Zhang, W. J.; Lu, F. S. et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Lett. 2015, 15, 2756–2762.

7

Li, J. S.; Zhao, M.; Zhao, C. J.; Jian, H. M.; Wang, N.; Yao, L. L.; Huang, C. S.; Zhao, Y. J.; Jiu, T. G. Graphdiyne-doped P3CT-K as an efficient hole-transport layer for MAPbI3 perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 2626–2631.

8

Li, J. S.; Jiu, T. G.; Duan, C. H.; Wang, Y.; Zhang, H. N.; Jian, H. M.; Zhao, Y. J.; Wang, N.; Huang, C. S.; Li, Y. L. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy 2018, 46, 331–337.

9

Li, M.; Wang, Z. K.; Kang, T.; Yang, Y. G.; Gao, X. Y.; Hsu, C. S.; Li, Y. L.; Liao, L. S. Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 2018, 43, 47–54.

10

Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943.

11

Li, H. S.; Zhang, R.; Li, Y. S.; Li, Y. M.; Liu, H. B.; Shi, J. J.; Zhang, H. Y.; Wu, H. J.; Luo, Y. H.; Li, D. M. et al. Graphdiyne-based bulk heterojunction for efficient and moisture-stable planar perovskite solar cells. Adv. Energy Mater. 2018, 8, 1802012.

12

Zhang, X. S.; Wang, Q.; Jin, Z. W.; Chen, Y. H.; Liu, H. B.; Wang, J. Z.; Li, Y. L.; Liu, S. Z. Graphdiyne quantum dots for much improved stability and efficiency of perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1701117.

13

Li, J. S.; Wang, N.; Bi, F. Z.; Chen, S. Q.; Zhao, C. J.; Liu, L.; Yao, Q. T.; Huang, C. S.; Xue, Y. R.; Liu, H. B. et al. Inverted MAPbI3 perovskite solar cells with graphdiyne derivative-incorporated electron transport layers exceeding 20% efficiency. Sol. RRL 2019, 3, 1900241.

14

Chen, S. Q.; Pan, Q. Y.; Li, J. S.; Zhao, C. J.; Guo, X.; Zhao, Y. J.; Jiu, T. G. Grain boundary passivation with triazine-graphdiyne to improve perovskite solar cell performance. Sci. China Mater. 2020, 63, 2465– 2476.

15

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

16

Xiao, W. Q.; Kang, H. F.; Lin, Y. D.; Liang, M. X.; Li, J. X.; Huang, F.; Feng, Q.; Zheng, Y. P.; Huang, Z. G. Fluorinated graphdiyne as a significantly enhanced fluorescence material. RSC Adv. 2019, 9, 18377–18382.

17

Jia, Z. Y.; Li, Y. J.; Zuo, Z. C.; Liu, H. B.; Huang, C. S.; Li, Y. L. Synthesis and properties of 2D carbon-graphdiyne. Acc. Chem. Res. 2017, 50, 2470–2478.

18

Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 2017, 7, 5209–5213.

19

Zhang, S. L.; Du, H. P.; He, J. J.; Huang, C. S.; Liu, H. B.; Cui, G. L.; Li, Y. L. Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 8, 8467–8473.

20

He, J. J.; Wang, N.; Yang, Z.; Shen, X. Y.; Wang, K.; Huang, C. S.; Yi, Y. P.; Tu, Z. Y.; Li, Y. L. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy Environ. Sci. 2018, 11, 2893–2903.

21

Li, J. Q.; Xu, J.; Xie, Z. Q.; Gao, X.; Zhou, J. Y.; Xiong, Y.; Chen, C. G.; Zhang, J.; Liu, Z. F. Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application. Adv. Mater. 2018, 30, 1800548.

22

Shi, J. S.; Gao, Y. R.; Gao, X.; Zhang, Y.; Zhang, J. J.; Jing, X.; Shao, M. Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 2019, 31, 1901673.

23

Shao, F.; Qin, P.; Wang, D.; Zhang, G. Q.; Wu, B.; He, J. Q.; Peng, W.; Sum, T. C.; Wang, D. L.; Huang, F. Q. Enhanced photovoltaic performance and thermal stability of CH3NH3Pbl3 perovskite through lattice symmetrization. ACS Appl. Mater. Interfaces 2019, 11, 740–746.

24

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

25

Wang, N.; He, J. J.; Tu, Z. Y.; Yang, Z.; Zhao, F. H.; Li, X. D.; Huang, C. S.; Wang, K.; Jiu, T. G.; Yi, Y. P. et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage. Angew. Chem., Int. Ed. 2017, 56, 10740–10745.

26

Zheng, F.; Takenaka, H.; Wang, F. G.; Koocher, N. Z.; Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 2015, 6, 31–37.

27

Kim, S. G.; Chen, J. Z.; Seo, J. Y.; Kang, D. H.; Park, N. G. Rear-surface passivation by melaminium iodide additive for stable and hysteresis-less perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 25372–25383.

28

Hu, Y. Y.; Liu, Z. G.; Nam, K. W.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K. M.; Du, L. S. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136.

29

Liu, B.; Cui, R. L.; Huang, H.; Guo, X. H.; Dong, J. Q.; Yao, H. L.; Li, Y.; Zhao, D. G.; Wang, J. H.; Zhang, J. et al. Elucidating the mechanisms underlying PCBM enhancement of CH3NH3PbI3 perovskite solar cells using GIXRD and XAFS. J. Mater. Chem. A 2020, 8, 3145– 3153.

30

Liu, B.; Cui, R. L.; Huang, H.; Guo, X. H.; Zuo, S. W.; Dong, J. Q.; Yao, H. L.; Li, Y.; Zhao, D. G.; Wang, J. H. et al. Structure optimization of CH3NH3PbI3 by higher-valence Pb in perovskite solar cells with enhanced efficiency and stability. Solar Energy 2020, 205, 202–210.

31

McLeod, J. A.; Wu, Z. W.; Sun, B. Q.; Liu, L. J. The influence of the I/Cl ratio on the performance of CH3NH3PbI3−xClx-based solar cells: Why is CH3NH3I: PbCl2 = 3: 1 the "magic" ratio?. Nanoscale 2016, 8, 6361–6368.

32

Chen, S.; Shi, G. Q. Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 2017, 29, 1605448.

33

Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.

Nano Research
Pages 573-580
Cite this article:
Huang H, Liu B, Wang D, et al. Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne. Nano Research, 2022, 15(1): 573-580. https://doi.org/10.1007/s12274-021-3522-9
Topics:

871

Views

17

Crossref

17

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 07 January 2021
Revised: 13 April 2021
Accepted: 14 April 2021
Published: 25 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return