Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The therapeutic efficacy of programmed cell death protein 1/programmed cell death–ligand 1 (PD-1/PD-L1) blockade immunotherapy is extremely dampened by complex immunosuppressive mechanisms including regulatory T cells (Treg), M2 macrophages (M2), and prostaglandin E2 (PGE2). The pivotal roles of PGE2 have been recognized by directly inactivating CD8+ T cells and indirectly inducing Treg and M2. Therefore, PGE2 abolishment through inactivating cyclooxygenase-2 (COX-2) could be robust to sensitize tumour toward anti-PD-1/PD-L1 immunotherapy, which has gone into clinical trials. However, exploring this promising strategy in nanomedicine to enhance immunotherapy remains unrevealed. The key challenge to synergistically combine COX-2 inhibition and anti-PD-1/PD-L1 lies in the different pharmacokinetic profiles and the spatial obstacles since PD-1/PD-L1 interaction occurs extracellularly and COX-2 locates intracellularly. Thus, the programmed release nanoparticles (termed as Cele-BMS-NPs) are rationally designed, which are composed of pH-sensitive human serum albumin derivative, BMS-202 compound as PD-1/PD-L1 inhibitor, glutathione (GSH)-activatable prodrug of celecoxib (COX-2 inhibitor). The in vitro experiments demonstrate that this smart Cele-BMS-NPs could extracellularly release BMS-202 under the acidic tumour microenvironment, and the intracellularly release of celecoxib in response to the elevated GSH concentration inside tumour cells. After systemic administration, the intratumoral infiltration of CD8+ T cells is significantly enhanced and meanwhile immunosuppressive M2, Treg, and PGE2 are reduced, thereby eliciting the anti-tumour immune responses toward low immunogenic tumours and postsurgical tumour recurrences.
Couzin-Frankel, J. Cancer immunotherapy. Science 2013, 342, 1432–1433.
Robert, C.; Schachter, J.; Long, G. V.; Arance, A.; Grob, J. J.; Mortier, L.; Daud, A.; Carlino, M. S.; McNeil, C.; Lotem, M. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 2015, 372, 2521–2532.
Sharma, P.; Allison, J. P. The future of immune checkpoint therapy. Science 2015, 348, 56–61.
Weber, J. S.; D'Angelo, S. P.; Minor, D.; Hodi, F. S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N. I.; Miller, W. H. Jr.; Lao, C. D. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015, 16, 375–384.
Brahmer, J. R.; Tykodi, S. S.; Chow, L. Q. M; Hwu, W. J.; Topalian, S. L.; Hwu, P.; Drake, C. G.; Camacho, L. H.; Kauh, J.; Odunsi, K. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465.
Kim, K.; Skora, A. D.; Li, Z. B.; Liu, Q.; Tam, A. J.; Blosser, R. L.; Diaz, L. A. Jr.; Papadopoulos, N.; Kinzler, K. W.; Vogelstein, B. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. USA 2014, 111, 11774–11779.
Postow, M. A.; Sidlow, R.; Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168.
Lybaert, L.; Vermaelen, K.; De Geest, B. G.; Nuhn, L. Immunoengineering through cancer vaccines—a personalized and multi-step vaccine approach towards precise cancer immunity. J. Control. Release 2018, 289, 125–145.
Nuhn, L.; De Koker, S.; Van Lint, S.; Zhong, Z. F.; Catani, J. P.; Combes, F.; Deswarte, K.; Li, Y. P.; Lambrecht, B. N.; Lienenklaus, S. et al. Nanoparticle-conjugate TLR7/8 agonist localized immunotherapy provokes safe antitumoral responses. Adv. Mater. 2018, 45, 1803397.
Butt, A. Q.; Mills, K. H. G. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene 2014, 33, 4623–4631.
Adams, J. L.; Smothers, J.; Srinivasan, R.; Hoos, A. Big opportunities for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 2015, 14, 603–622.
Kryczek, I.; Wei, S.; Zou, L. H.; Zhu, G. F.; Mottram, P.; Xu, H. B.; Chen, L. P.; Zou, W. P. Cutting edge: Induction of B7-H4 on APCs through IL-10: Novel suppressive mode for regulatory T cells. J. Immunol. 2006, 177, 40–44.
Nakanishi, Y.; Nakatsuji, M.; Seno, H.; Ishizu, S.; Akitake-Kawano, R.; Kanda, K.; Ueo, T.; Komekado, H.; Kawada, M.; Minami, M. et al. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 2011, 32, 1333–1339.
Ruffell, B.; Affara, N. I.; Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33, 119–126.
Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.
Mahic, M.; Yaqub, S.; Johansson, C. C.; Taskén, K.; Aandahl, E. M. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J. Immunol. 2006, 177, 246–254.
Wang, S. J.; Khullar, K.; Yegya-Raman, N.; Kim, S.; Silk, A. W.; Malhotra, J.; Gentile, M. A.; Mehnert, J. M.; Jabbour, S. K. Cyclooxygenase inhibitor use during checkpoint blockade immunotherapy and effect on time to progression for metastatic melanoma patients. J. Clin. Oncol. 2019, 37, e21029.
Wang, S. J.; Khullar, K.; Kim, S.; Yegya-Raman, N.; Malhotra, J.; Groisberg, R.; Crayton, S. H.; Silk, A. W.; Nosher, J. L.; Gentile, M. A. et al. Effect of cyclo-oxygenase inhibitor use during checkpoint blockade immunotherapy in patients with metastatic melanoma and non-small cell lung cancer. J. ImmunoTher. Cancer 2020, 8, e000889.
Yang, J. X.; Wang, C. H.; Shi, S.; Dong, C. Y. Nanotechnologies for enhancing cancer immunotherapy. Nano Res. 2020, 13, 2595–2616.
Li, Z. L.; Hu, Y.; Miao, Z. H.; Xu, H.; Li, C. X.; Zhao, Y.; Li, Z.; Chang, M. L.; Ma, Z.; Sun, Y. et al. Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano Lett. 2018, 18, 6778–6788.
Rajendrakumar, S. K.; Cherukula, K.; Park, H. J.; Uthaman, S.; Jeong, Y. Y.; Lee, B. I.; Park, I. K. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J. Control. Release 2018, 276, 72–83.
Qu, Y.; Chu, B. Y.; Wei, X. W.; Lei, M. Y.; Hu, D. R.; Zha, R. Y.; Zhong, L.; Wang, M. Y.; Wang, F. F.; Qian, Z. Y. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J. Control. Release 2019, 296, 93–106.
Zhang, X. L.; Zhang, C. N.; Cheng, M. B.; Zhang, Y. H.; Wang, W.; Yuan, Z. Dual pH-responsive "charge-reversal like" gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Res. 2019, 12, 2815–2856.
Zhang, Z. Z.; Wang, Q. X.; Liu, Q.; Zheng, Y. D.; Zheng, C. X.; Yi, K. K.; Zhao, Y.; Gu, Y.; Wang, Y.; Wang, C. et al. Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy. Adv. Mater. 2019, 31, 1905751.
Liu, J. Y.; Liu, W. G.; Weitzhandler, I.; Bhattacharyya, J.; Li, X. H.; Wang, J.; Qi, Y. Z.; Bhattacharjee, S.; Chilkoti, A. Ring-opening polymerization of prodrugs: A versatile approach to prepare well-defined drug-loaded nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1002–1006.
Noh, J.; Kwon, B.; Han, E.; Park, M.; Yang, W.; Cho, W.; Yoo, W.; Khang, G.; Lee, D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun. 2015, 6, 6907.
Feng, L. D.; Wang, Y. Q.; Luo, Z. L.; Huang, Z.; Zhang, Y.; Guo, K.; Ye, D. J. Dual stimuli-responsive nanoparticles for controlled release of anticancer and anti-inflammatory drugs combination. Chem. –Eur. J. 2017, 23, 9397–9406.
Palanikumar, L.; Jeena, M. T.; Kim, K.; Oh, J. Y.; Kim, C.; Park, M. H.; Ryu, J. H. Spatiotemporally and sequentially-controlled drug release from polymer gatekeeper-hollow silica nanoparticles. Sci. Rep. 2017, 7, 46540.
Sun, Z. Q.; Liu, G. H.; Hu, J. M.; Liu, S. Y. Photo- and reduction-responsive polymersomes for programmed release of small and macromolecular payloads. Biomacromolecules 2018, 19, 2071–2081.
Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677.
Eisele, K.; Gropeanu, R. A.; Zehendner, C. M.; Rouhanipour, A.; Ramanathan, A.; Mihov, G.; Koynov, K.; Kuhlmann, C. R. W.; Vasudevan, S. G.; Luhmann, H. J. et al. Fine-tuning DNA/albumin polyelectrolyte interactions to produce the efficient transfection agent cBSA-147. Biomaterials 2010, 31, 8789–8801.
Wu, Y. Z.; Pramanik, G.; Eisele, K.; Weil, T. Convenient approach to polypeptide copolymers derived from native proteins. Biomacromolecules 2012, 13, 1890–1898.
Wu, Y. Z.; Ihme, S.; Feuring-Buske, M.; Kuan, S. L.; Eisele, K.; Lamla, M.; Wang, Y. R.; Buske, C.; Weil, T. A core–shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv. Healthc. Mater. 2013, 2, 884–894.
Meier, C.; Wu, Y. Z.; Pramanik, G.; Weil, T. Self-assembly of high molecular weight polypeptide copolymers studied via diffusion limited aggregation. Biomacromolecules 2014, 15, 219–227.
Wu, Y. Z.; Ermakova, A.; Liu, W. N.; Pramanik, G.; Vu, T. M.; Kurz, A.; McGuinness, L.; Naydenov, B.; Hafner, S.; Reuter, R. et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Adv. Funct. Mater. 2015, 25, 6576– 6585.
Alouane, A.; Labruère, R.; Le Saux, T.; Schmidt, F.; Jullien, L. Self-immolative spacers: Kinetic aspects, structure-property relationships, and applications. Angew. Chem., Int. Ed. 2015, 54, 7492–7509.
Roth, M. E.; Green, O.; Gnaim, S.; Shabat, D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem. Rev. 2016, 116, 1309–1352.
Boussif, O.; Zanta, M. A.; Behr, J. P. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996, 3, 1074–1080.
Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663.
Jiang, Y. Y.; Lu, H. X.; Dag, A.; Hart-Smith, G.; Stenzel, M. H. Albumin-polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: Comparison between PMMA and PCL. J. Mater. Chem B 2016, 4, 2017–2027.
Jiang, Y. Y.; Wong, S.; Chen, F.; Chang, T.; Lu, H. X.; Stenzel, M. H. Influencing selectivity to cancer cells with mixed nanoparticles prepared from albumin-polymer conjugates and block copolymers. Bioconjug. Chem. 2017, 28, 979–985.
Taguchi, K.; Lu, H. X.; Jiang, Y. Y.; Hung, T. T.; Stenzel, M. H. Safety of nanoparticles based on albumin-polymer conjugates as a carrier of nucleotides for pancreatic cancer therapy. J. Mater. Chem. B 2018, 6, 6278–6287.
Piloni, A.; Wong, C. K.; Chen, F.; Lord, M.; Walther, A.; Stenzel, M. H. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale 2019, 11, 23259–23267.
Ko, J. Y.; Park, S.; Lee, H.; Koo, H.; Kim, M. S.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K.; Lee, D. S. pH-sensitive nanoflash for tumoral acidic pH imaging in live animals. Small 2010, 6, 2539–2544.
Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed. 2011, 50, 6109–6114.
Zhou, K. J.; Liu, H. M.; Zhang, S. R.; Huang, X. N.; Wang, Y. G.; Huang, G.; Sumer, B. D.; Gao, J. M. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 2012, 134, 7803–7811.
Wang, Y. G.; Zhou, K. J.; Huang, G.; Hensley, C.; Huang, X. N.; Ma, X. P.; Zhao, T.; Sumer, B. D.; DeBerardinis, R. J.; Gao, J. M. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 2014, 13, 204–212.
Guzik, K.; Zak, K. M.; Grudnik, P.; Magiera, K.; Musielak, B.; Törner, R.; Skalniak, L.; Dömling, A.; Dubin, G.; Holak, T. A. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J. Med. Chem. 2017, 60, 5857–5867.
Skalniak, L.; Zak, K. M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M. et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 2017, 8, 72167–72181.
Konstantinidou, M.; Zarganes-Tzitzikas, T.; Magiera-Mularz, K.; Holak, T. A.; Dömling, A. Immune checkpoint PD-1/PD-L1: Is there life beyond antibodies? Angew. Chem., Int. Ed. 2018, 57, 4840–4848.
Wang, C.; Sun, W. J.; Wright, G.; Wang, A. Z.; Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 2016, 28, 8912–8920.
Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.