AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria

Dongzhen Chen1,§Liang Zhang1,§Pan Ning2Haozhi Yuan3Yu Zhang4Meng Zhang5( )Tao Fu2( )Xinhai He1( )
Key laboratory of functional textile sensing fiber and irregular shape weaving technology School of Materials Science & Engineering Xi'an Polytechnic University Xi'an 710048 China
Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
Non-equilibrium Condensed Matter and Quantum Engineering Laboratory. The Key Laboratory of Ministry of Education School of Science Xi'an Jiaotong University Xi'an 710049 China
Department of Neurology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 China

§ Dongzhen Chen and Liang Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Plasmonic surface of flexible multilayered nanofibers possesses special superiority for the surface-enhanced Raman scattering (SERS) sensing of molecules and microbial cells. However, the fabrication of flexible plasmonic nanofibers with high sensitivity and reproducibility is difficult. Herein, we report a smart strategy for fabricating flexible plasmonic fibers, in which compact and homogeneous gold nanoparticles (Au NPs) are in-situ grown on the high-curvature surface of multilayered fibers of electrospun polyvinylidene fluoride (PVDF). Firstly, the surface of PVDF fibers is changed electrically, and Au seeds are deposited on the surface of PVDF fibers using electrostatic driving force. Secondly, a stable AuI4- complex is formed employing coordination between I- and AuCl4- ions, which could decrease the reduction potential of AuCl4- and restrain the self-nucleation, and then the reduction reaction of AuI4- is initiated by introducing PVDF@Au seeds to pull down the barrier of potential energy. Finally, in-situ growth of AuNPs is generated on the high-curvature surface of PVDF nanofibers, and large-scale hotspots are generated by adjacent AuNPs coupling in the three-dimensional (3D) space of multilayered fibers. Membrane of PVDF@Au nanofibers also realizes the sensitive detection of thiram molecules (low limit of detection of 0.1 nM) and good reproducibility (relative standard deviation of 10.6%). Meanwhile, due to the multilayered construction of PVDF@Au nanofibers, a valid SERS signal on 3D surface of bacteria could be generated. 3D distribution of hotspots on multilayered PVDF@Au nanofibers gives a clear advantage for SERS sensing of organic molecules and microbial cells.

Electronic Supplementary Material

Download File(s)
12274_2021_3530_MOESM1_ESM.pdf (2.9 MB)

References

1

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494-521.

2

Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 2013, 12, 165-171.

3

Zhang, S. D.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 2017, 117, 12942-13038.

4

Chen, D. Z.; Song, Z. X.; Chen, F.; Huang, J.; Wei, J.; Zhao, Y. X. Simply controllable growth of single crystal plasmonic Au-Ag nano-spines with anisotropic multiple sites for highly sensitive and uniform surface-enhanced Raman scattering sensing. RSC Adv. 2016, 6, 66056-66065.

5

Severyukhina, A. N.; Parakhonskiy, B. V.; Prikhozhdenko, E. S.; Gorin, D. A.; Sukhorukov, G. B.; Möhwald, H.; Yashchenok, A. M. Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules. ACS Appl. Mater. Interfaces 2015, 7, 15466-15473.

6

Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946-4980.

7

Chen, D. Z.; Ning, P.; Zhang, Y.; Jing, J. Y.; Zhang, M.; Zhang, L.; Huang, J.; He, X. H.; Fu, T.; Song, Z. X. et al. Ta@Ag porous array with high stability and biocompatibility for SERS sensing of bacteria. ACS Appl. Mater. Interfaces 2020, 12, 20138-20144.

8

Wang, H. Y.; Zhou, Y. F.; Jiang, X. X.; Sun, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem., Int. Ed. 2015, 54, 5132-5136.

9

Lin, C. C.; Yang, Y. M.; Liao, P. H.; Chen, D. W.; Lin, H. P.; Chang, H. C. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection. Biosens. Bioelectron. 2014, 53, 519-527.

10

Zhang, S. D.; Xiong, R.; Mahmoud, M. A.; Quigley, E. N.; Chang, H. B.; El-Sayed, M.; Tsukruk, V. V. Dual-excitation nanocellulose plasmonic membranes for molecular and cellular SERS detection. ACS Appl. Mater. Interfaces 2018, 10, 18380-18389.

11

Chen, C.; Li, Y.; Kerman, S.; Neutens, P.; Willems, K.; Cornelissen, S.; Lagae, L.; Stakenborg, T.; Van Dorpe, P. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 2018, 9, 1733.

12

Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11, 4468-4488.

13

Zhang, C. L.; Lv, K. P.; Cong, H. P.; Yu, S. H. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small 2012, 8, 648-653.

14

Tang, W. Q.; Chase, D. B.; Rabolt, J. F. Immobilization of gold nanorods onto electrospun polycaprolactone fibers via polyelectrolyte decoration-a 3D SERS substrate. Anal. Chem. 2013, 85, 10702-10709.

15

Chamuah, N.; Bhuyan, N.; Das, P. P.; Ojah, N.; Choudhary, A. J.; Medhi, T.; Nath, P. Gold-coated electrospun PVA nanofibers as SERS substrate for detection of pesticides. Sens. Actuators B Chem. 2018, 273, 710-717.

16

Zhao, X. F.; Li, C. H.; Li, Z.; Yu, J.; Pan, J.; Si, H. P.; Yang, C.; Jiang, S. Z.; Zhang, C.; Man, B. Y. In-situ electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface. Nanophotonics 2019, 8, 1719-1729.

17

Qu, L. L.; Wang, N.; Xu, H.; Wang, W. P.; Liu, Y.; Kuo, L. D.; Yadav, T. P.; Wu, J. J.; Joyner, J.; Song, Y. H. et al. Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering. Adv. Funct. Mater. 2017, 27, 1701714.

18

Zhong, L. B.; Yin, J.; Zheng, Y. M.; Liu, Q.; Cheng, X. X.; Luo, F. H. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal. Chem. 2014, 86, 6262-6267.

19

Yuan, Y. F.; Panwar, N.; Yap, S. H. K.; Wu, Q.; Zeng, S. W.; Xu, J. H.; Tjin, S. C.; Song, J.; Qu, J. L.; Yong, K. T. SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coord. Chem. Rev. 2017, 337, 1-33.

20

Fan, M. K.; Andrade, G. F. S.; Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7-25.

21

Pang, S.; Yang, T. X.; He, L. L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal. Chem. 2016, 85, 73-82.

22

Li, X. F.; Cao, M. H.; Zhang, H.; Zhou, L.; Cheng, S.; Yao, J. L.; Fan, L. J. Surface-enhanced Raman scattering-active substrates of electrospun polyvinyl alcohol/gold-silver nanofibers. J. Colloid Interface Sci. 2012, 382, 28-35.

23

Sun, B.; Long, Y. Z.; Chen, Z. J.; Liu, S. L.; Zhang, H. D.; Zhang, J. C.; Han, W. P. Recent advances in flexible and stretchable electronic devices via electrospinning. J. Mater. Chem. C 2014, 2, 1209-1219.

24

Lin, J. Y.; Wang, X. F.; Ding, B.; Yu, J. Y.; Sun, G.; Wang, M. R. Biomimicry via electrospinning. Crit. Rev. Solid State Mater. Sci. 2012, 37, 94-114.

25

Yang, T.; Yang, H.; Zhen, S. J.; Huang, C. Z. Hydrogen-bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl. Mater. Interfaces 2015, 7, 1586-1594.

26

Lee, C. H.; Tian, L. M.; Abbas, A.; Kattumenu, R.; Singamaneni, S. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology 2011, 22, 275311.

27

Amarjargal, A.; Tijing, L. D.; Shon, H. K.; Park, C. H.; Kim, C. S. Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: Flexible and high efficiency substrates for surface enhanced Raman scattering. Appl. Surf. Sci. 2014, 308, 396-401.

28

He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993-4002.

29

Zhu, H.; Du, M. L.; Zhang, M.; Wang, P.; Bao, S. Y.; Zou, M. L.; Fu, Y. Q.; Yao, J. M. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: A highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Biosens. Bioelectron. 2014, 54, 91-101.

30

Liu, X.; Ma, J.; Wu, X. M.; Lin, L. W.; Wang, X. H. Polymeric nanofibers with ultrahigh piezoelectricity via self-orientation of nanocrystals. ACS Nano 2017, 11, 1901-1910.

31

Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J. Y.; Shin, H. J.; Kim, S. W.; Cho, J. H. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv. Funct. Mater. 2018, 28, 1703778.

32

Huang, T.; Yang, S. W.; He, P.; Sun, J.; Zhang, S.; Li, D. D.; Meng, Y.; Zhou, J. S.; Tang, H. X.; Liang, J. R. et al. Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces 2018, 10, 30732-30740.

33

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389-1393.

34

Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648-8649.

35

Shi, Y. F.; Lyu, Z. H.; Zhao, Ming.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649-735.

36

Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542-14554.

37

Lohse, S. E.; Burrows, N. D.; Scarabelli, L.; Liz-Marzan, L. M.; Murphy, C. J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34-43.

38

Gao, C. B.; Zhang, Q.; Lu, Z. D.; Yin, Y. D. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706-19709.

39

Chen, D. Z.; Zhu, X. D.; Huang, J.; Wang, G.; Zhao, Y.; Chen, F.; Wei, J.; Song, Z. X.; Zhao, Y. X. Polydopamine@gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples. Anal. Chem. 2018, 90, 9048-9054.

40

Zhao, X. J.; Luo, X. J.; Bazuin, C. G.; Masson, J. F. In situ growth of AuNPs on glass nanofibers for SERS sensors. ACS Appl. Mater. Interfaces 2020, 12, 55349-55361.

41

Karan, S. K.; Bera, R.; Paria, S.; Das, A. K.; Maiti, S.; Maitra, A.; Khatua, B. B. An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv. Energy Mater. 2016, 6, 1601016.

42

Yang, T.; Pan, H.; Tian G.; Zhang, B. B.; Xiong, D.; Gao, Y. Y.; Yan, C.; Chu, X.; Chen, N. J.; Zhong, S. et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706.

43

Zhu, H.; Lussier, F.; Ducrot, C.; Bourque, M. J.; Spatz, J. P.; Cui, W. L.; Yu, L.; Peng, W.; Trudeau, L. É.; Bazuin, C. G. et al. Block copolymer brush layer-templated gold nanoparticles on nanofibers for surface-enhanced Raman scattering optophysiology. ACS Appl. Mater. Interfaces 2019, 11, 4373-4384.

44

Huang, J.; Ma, D. Y; Chen, F.; Bai, M.; Xu, K. W.; Zhao, Y. X. Ag nanoparticles decorated cactus-like Ag dendrites/Si nanoneedles as highly efficient 3D surface-enhanced Raman scattering substrates toward sensitive sensing. Anal. Chem. 2015, 87, 10527-10534.

45

Liu, Z.; Yang, Z. B.; Peng, B.; Cao, C.; Zhang, C.; You, H. J.; Xiong, Q. H.; Li, Z. Y.; Fang, J. X. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv. Mater. 2014, 26, 2431-2439.

46

Zhang, R.; Hong, Y.; Reinhard, B. M.; Liu, P. H.; Wang, R.; Dal Negro, L. Plasmonic nanotrough networks for scalable bacterial Raman biosensing. ACS Appl. Mater. Interfaces 2018, 10, 27928-27935.

47

Fang, T.; Shang, W. H.; Liu, C.; Xu, J. J.; Zhao, D. P.; Liu, Y. Y.; Ye, A. P. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers. Anal. Chem. 2019, 91, 9932-9939.

48

Yang, D. T.; Zhou, H. B.; Haisch, C.; Niessner, R.; Ying, Y. B. Reproducible E. coli detection based on label-free SERS and mapping. Talanta 2016, 146, 457-463.

Nano Research
Pages 4885-4893
Cite this article:
Chen D, Zhang L, Ning P, et al. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria. Nano Research, 2021, 14(12): 4885-4893. https://doi.org/10.1007/s12274-021-3530-9
Topics:

657

Views

40

Crossref

38

Web of Science

38

Scopus

1

CSCD

Altmetrics

Received: 17 January 2021
Revised: 14 April 2021
Accepted: 20 April 2021
Published: 07 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return