AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of hierarchical FeNi3@(Fe, Ni)S2 core-shell heterojunctions for advanced oxygen evolution

Minglei Yan1Zhiyang Zhao1Peixin Cui2Kun Mao1Chi Chen3Xizhang Wang1Qiang Wu1Hui Yang3Lijun Yang1 ( )Zheng Hu1 ( )
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of NanotechnologySchool of Chemistry and Chemical Engineering, Nanjing UniversityNanjing210023China
Key Laboratory of Soil Environment and Pollution RemediationInstitute of Soil Science, Chinese Academy of SciencesNanjing210008China
Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
Show Author Information

Graphical Abstract

Abstract

The investigation of earth-abundant electrocatalysts for efficient water electrolysis is of central importance in renewable energy system, which is currently impeded by the large overpotential of oxygen evolution reaction (OER). NiFe sulfides show promising OER activity but are troubled by their low intrinsic conductivities. Herein, we demonstrate the construction of the porous core-shell heterojunctions of FeNi3@(Fe, Ni)S2 with tunable shell thickness via the reduction of hierarchical NiFe(OH)x nanosheets followed by a partial sulfidization. The conductive FeNi3 core provides the highway for electron transport, and the (Fe, Ni)S2 shell offers the exposed surface for in situ generation of S-doped NiFe-oxyhydroxides with high intrinsic OER activity, which is supported by the combined experimental and theoretical studies. In addition, the porous hierarchical morphology favors the electrolyte access and O2 liberation. Consequently, the optimized catalyst achieves an excellent OER performance with a low overpotential of 288 mV at 100 mA·cm-2, a small Tafel slope of 48 mV·dec-1, and a high OER durability for at least 1, 200 h at 200 mA·cm-2. This study provides an effective way to explore the advanced earth-abundant OER electrocatalysts by constructing the heterojunctions between metal and corresponding metal-compounds via the convenient post treatment, such as nitridation and sulfidization.

Electronic Supplementary Material

Download File(s)
12274_2021_3531_MOESM1_ESM.pdf (5.1 MB)

References

1

Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012-6021.

2

Ismail, M. S.; Moghavvemi, M.; Mahlia, T. M. I.; Muttaqi, K. M.; Moghavvemi, S. Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis. Renew. Sust. Energ. Rev. 2015, 42, 726-734.

3

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 2019, 247, 107-114.

4

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.

5

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

6

Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem. , Int. Ed. 2019, 58, 736-740.

7

Wang, Y. Q.; Chen, S.; Zhang, J. T. Hierarchical assembly of prussian blue derivatives for superior oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1904955.

8

Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

9

Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

10

Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587-17603.

11

Wang, Y. Q.; Ma, J. Z.; Wang, J.; Chen, S.; Wang, H. S.; Zhang, J. T. Interfacial scaffolding preparation of hierarchical PBA-based derivative electrocatalysts for efficient water splitting. Adv. Energy Mater. 2019, 9, 1802939.

12

Guo, D. Y.; Qi, J.; Zhang, W.; Cao, R. Surface electrochemical modification of a nickel substrate to prepare a NiFe-based electrode for water oxidation. ChemSusChem 2017, 10, 394-400.

13
Edison, T. A. Electrolyte for alkaline storage batteries. U.S. Patent 0, 876, 445, Jan. 14, 1908.
14

Duan, Y.; Yu, Z. Y.; Hu, S. J.; Zheng, X. S.; Zhang, C. T.; Ding, H. H.; Hu, B. C.; Fu, Q. Q.; Yu, Z. L.; Zheng, X. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem. , Int. Ed. 2019, 58, 15772-15777.

15

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.

16

Xiao, H.; Shin, H.; Goddard Ⅲ, W. A. Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 5872-5877.

17

Saad, A.; Shen, H. J.; Cheng, Z. X.; Arbi, R.; Guo, B. B.; Hui, L. S.; Liang, K. Y.; Liu, S. Q.; Attfield, J. P.; Turak, A. et al. Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 2020, 12, 79.

18

Yin, X. C.; Sun, G.; Wang, L. X.; Bai, L.; Su, L.; Wang, Y. Z.; Du, Q. H.; Shao, G. J. 3D hierarchical network NiCo2S4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 2017, 42, 25267-25276.

19

Lv, J. J.; Wu, S. J.; Qiao, M.; Li, L. L.; Zhu, J. J. Mesoporous NiCoPx nanoplates as highly efficient electrocatalysts for overall water splitting. J. Power Sources 2018, 400, 434-440.

20

Li, J. W.; Song, J. D.; Huang, B. Y.; Liang, G. F.; Liang, W. L.; Huang, G. J.; Qi Jin, Y.; Zhang, H.; Xie, F. Y.; Chen, J. et al. Enhancing the oxygen evolution reaction performance of NiFeOOH electrocatalyst for Zn-air battery by N-doping. J. Catal. 2020, 389, 375-381.

21

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005- 7013.

22

Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328-334.

23

Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035-1042.

24

Mahala, C.; Sharma, M. D.; Basu, M. 2D nanostructures of CoFe2O4 and NiFe2O4: Efficient oxygen evolution catalyst. Electrochim. Acta 2018, 273, 462-473.

25

Peng, X.; Wang, L.; Hu, L. S.; Li, Y.; Gao, B.; Song, H.; Huang, C.; Zhang, X. M.; Fu, J. J.; Huo, K. F. et al. In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co2V2O7 nanosheets as efficient oxygen evolution reaction electrocatalysts. Nano Energy 2017, 34, 1-7.

26

Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

27

Yu, X. W.; Zhang, M.; Tong, Y.; Li, C.; Shi, G. Q. A large-scale graphene-bimetal film electrode with an ultrahigh mass catalytic activity for durable water splitting. Adv. Energy Mater. 2018, 8, 1800403.

28

Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z. H.; Wang, Y. Q.; Zhang, N. N.; Xie, C.; He, Q. G.; Jiang, D. C. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem. , Int. Ed. 2019, 58, 1019-1024.

29

Yang, J. L.; Xiao, Y. G.; Zhao, Q. H.; Zhang, G. X.; Wang, R.; Teng, G. G.; Chen, X.; Weng, M.; He, D.; Mu, S. et al. Synergistic effect of charge transfer and short H-bonding on nanocatalyst surface for efficient oxygen evolution reaction. Nano Energy 2019, 59, 443-452.

30

Wu, D.; Wei, Y. C.; Ren, X.; Ji, X. Q.; Liu, Y. W.; Guo, X. D.; Liu, Z. A.; Asiri, A. M.; Wei, Q.; Sun, X. P. Co(OH)2 nanoparticle- encapsulating conductive nanowires array: Room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv. Mater. 2018, 30, 1705366.

31

Pintado, S.; Goberna-Ferrón, S.; Escudero-Adán, E. C.; Galán- Mascarós, J. R. Fast and persistent electrocatalytic water oxidation by Co-Fe prussian blue coordination polymers. J. Am. Chem. Soc. 2013, 135, 13270-13273.

32

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508-517.

33

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.

34

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

35

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

36

Che, Q. J.; Li, Q.; Tan, Y.; Chen, X. H.; Xu, X.; Chen, Y. S. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B: Environ. 2019, 246, 337-348.

37

Wei, P. K.; Li, X. M.; Li, J.; Bai, J. W.; Jiang, C. J.; Liu, L. A facile synthesis of ternary nickel iron sulfide nanospheres as counter electrode in dye-sensitized solar cells. Chem. —Eur. J. 2018, 24, 19032-19037.

38

Hao, S. Y.; Chen, L. H.; Yu, C. L.; Yang, B.; Li, Z. J.; Hou, Y.; Lei, L. C.; Zhang, X. W. NiCoMo hydroxide nanosheet arrays synthesized via chloride corrosion for overall water splitting. ACS Energy Lett. 2019, 4, 952-959.

39

Wang, B. L.; Zhao, K. N.; Yu, Z.; Sun, C. L.; Wang, Z.; Feng, N. N.; Mai, L. Q.; Wang, Y. G.; Xia, Y. Y. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200-2208.

40

Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364-4376.

41

Yu, M. Q.; Moon, G.; Bill, E.; Tüysüz, H. Optimizing Ni-Fe oxide electrocatalysts for oxygen evolution reaction by using hard templating as a toolbox. ACS Appl. Energy Mater. 2019, 2, 1199-1209.

42

Zhang, J. F.; Hu, Y. C.; Liu, D. L.; Yu, Y.; Zhang, B. Enhancing oxygen evolution reaction at high current densities on amorphous- like Ni-Fe-S ultrathin nanosheets via oxygen incorporation and electrochemical tuning. Adv. Sci. 2017, 4, 1600343.

43

Anantharaj, S.; Kundu, S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 2019, 4, 1260-1264.

44

Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem. , Int. Ed. 2019, 58, 4189-4194.

45

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

46

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.

47

Jiang, J.; Lu, S.; Wang, W. K.; Huang, G. X.; Huang, B. C.; Zhang, F.; Zhang, Y. J.; Yu, H. Q. Ultrahigh electrocatalytic oxygen evolution by iron-nickel sulfide nanosheets/reduced graphene oxide nanohybrids with an optimized autoxidation process. Nano Energy 2018, 43, 300-309.

48

Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 2017, 5, 4335-4342.

Nano Research
Pages 4220-4226
Cite this article:
Yan M, Zhao Z, Cui P, et al. Construction of hierarchical FeNi3@(Fe, Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Research, 2021, 14(11): 4220-4226. https://doi.org/10.1007/s12274-021-3531-8
Topics:

795

Views

50

Crossref

49

Web of Science

48

Scopus

8

CSCD

Altmetrics

Received: 06 March 2021
Revised: 15 April 2021
Accepted: 19 April 2021
Published: 28 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return