AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures

Jung Il Yoo§Seung Hyun Kim§Heung Cho Ko( )
School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

§ Jung Il Yoo and Seung Hyun Kim contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The evolution of membrane-type electronics has facilitated the development of stick-and-play systems, which confer diverse electrical functions to various planar or arbitrary curvilinear surfaces. The stick-and-play concept is based on the development of thin electronic devices in a printable format and their subsequent transfer to target surfaces. The development of this technology requires control of the interfacial adhesion of the electronic prints for retrieval from a carrier and transfer to the target surface. First, we discuss the transfer printing for membrane-type electronics, starting from an overview of materials available for flexible substrates, transfer printing of electronic prints for retrieval, and assembly for further integration. Second, we explain the stick-and-play concept based on fabricated membrane-type electronics; "stick" and "play" refer to the transfer of electronic devices and the performance of their electronic functions, respectively. In particular, we broadly survey various methods based on micro/nanostructures, including gecko-inspired, interlocking, cephalopod-sucker-inspired, and cilia structures, which can be employed to stick-and-play systems for enhancing interfacial adhesion with complex target surfaces under dynamic and wet conditions. Finally, we highlight the stick-and-play system application of micro/nanostructures for skin-attachable biomedical electronics, e-textiles, and environmental monitoring electronics.

References

[1]
Yokota, T.; Nakamura, T.; Kato, H.; Mochizuki, M.; Tada, M.; Uchida, M.; Lee, S.; Koizumi, M.; Akio, W. Y.; Takimoto, A. et al. A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 2020, 3, 113-121.
[2]
Song, E. M.; Chiang, C. H.; Li, R.; Jin, X.; Zhao, J. N.; Hill, M.; Xia, Y.; Li, L. Z.; Huang, Y. M.; Won, S. M. et al. Flexible electronic/ optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl. Acad. Sci. USA 2019, 116, 15398-15406.
[3]
Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773-2778.
[4]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[5]
Lee, W.; Kim, D.; Rivnay, J.; Matsuhisa, N.; Lonjaret, T.; Yokota, T.; Yawo, H.; Sekino, M.; Malliaras, G. G.; Someya, T. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 2016, 28, 9722-9728.
[6]
Lee, W.; Kim, D.; Matsuhisa, N.; Nagase, M.; Sekino, M.; Malliaras, G. G.; Yokota, T.; Someya, T. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl. Acad. Sci. USA 2017, 114, 10554-10559.
[7]
Lee, W.; Kobayashi, S.; Nagase, M.; Jimbo, Y.; Saito, I.; Inoue, Y.; Yambe, T.; Sekino, M.; Malliaras, G. G.; Yokota, T. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 2018, 4, eaau2426.
[8]
Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516-521.
[9]
Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511-517.
[10]
Tian, L. M.; Zimmerman, B.; Akhtar, A.; Yu, K. J.; Moore, M.; Wu, J.; Larsen, R. J.; Lee, J. W.; Li, J. H.; Liu, Y. H. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 2019, 3, 194-205.
[11]
Choi, M. K.; Park, O. K.; Cho, C.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, D. J.; Kim, M.; Hyun, W.; Kim, S. J. et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 2016, 5, 80-87.
[12]
Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.
[13]
Kim, D. H.; Lu, N. S.; Ghaffari, R.; Kim, Y. S.; Lee, S. P.; Xu, L. Z.; Wu, J.; Kim, R. H.; Song, J. Z.; Liu, Z. J. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 2011, 10, 316-323.
[14]
Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95-99.
[15]
Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748-753.
[16]
Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472-478.
[17]
Kaltenbrunner, M. Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458-463.
[18]
Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai. T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966-9970.
[19]
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.
[20]
Kim, M. S.; Lee, G. J.; Choi, C.; Kim, M. S.; Lee, M.; Liu, S. Y.; Cho, K. W.; Kim, H. M.; Cho, H.; Choi, M. K. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 2020, 3, 546-553.
[21]
Lee, H. E.; Kim, S.; Ko, J.; Yeom, H. I.; Byun, C. W.; Lee, S. H.; Joe, D. J.; Im, T. H.; Park, S. H. K.; Lee, K. J. Skin-like oxide thin-film transistors for transparent displays. Adv. Funct. Mater. 2016, 26, 6170-6178.
[22]
Yun, S. O.; Hwang, Y.; Park, J.; Jeong, Y.; Kim, S. H.; Noh, B. I.; Jung, H. S.; Jang, H. S.; Hyun, Y.; Choa, S. H. et al. Sticker-type Alq3-based OLEDs based on printable ultrathin substrates in periodically anchored and suspended configurations. Adv. Mater. 2013, 25, 5626-5631.
[23]
Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977-981.
[24]
Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 2012, 6, 105-110.
[25]
Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T. Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494-499.
[26]
Kim, H. S.; Brueckner, E.; Song, J. Z.; Li, Y. H.; Kim, S.; Lu, C. F.; Sulkin, J.; Choquette, K.; Huang, Y. G.; Nuzzo, R. G. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl. Acad. Sci. USA 2011, 108, 10072-10077.
[27]
Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33-38.
[28]
Menard, E.; Lee, K. J.; Khang, D. Y.; Nuzzo, R. G.; Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 2004, 84, 5398-5400.
[29]
Baca, A. J.; Meitl, M. A.; Ko, H. C.; Mack, S.; Kim, H. S.; Dong, J.; Ferreira, P. M.; Rogers, J. A. Printable single-crystal silicon micro/ nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 2007, 17, 3051-3062.
[30]
Ko, H. C.; Shin, G.; Wang, S. D.; Stoykovich, M. P.; Lee, J. W.; Kim, D. H.; Ha, J. S.; Huang, Y. G.; Hwang, K. C.; Rogers, J. A. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 2009, 5, 2703-2709.
[31]
Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507-511.
[32]
Ahn, J. H.; Kim, H. S.; Menard, E.; Lee, K. J.; Zhu, Z. T.; Kim, D. H.; Nuzzo, R. G.; Rogers, J. A. Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 2007, 90, 213501.
[33]
Yoon, J.; Baca, A. J.; Park, S. I.; Elvikis, P.; Geddes III, J. B.; Li, L. F.; Kim, R. H.; Xiao, J. L.; Wang, S. D.; Kim, T. H. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008, 7, 907-915.
[34]
Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495-500.
[35]
Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y. G.; Wang, C. J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304-309.
[36]
Cao, Q.; Xia, M. G.; Shim, M.; Rogers, J. A. Bilayer organic-inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p-n diodes on plastic substrates. Adv. Funct. Mater. 2006, 16, 2355-2362.
[37]
Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754-1757.
[38]
Lee, K, J.; Lee, J.; Hwang, H.; Reitmeier, Z. J.; Davis, R. F.; Rogers, J. A.; Nuzzo, R. G. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Small 2005, 1, 1164-1168.
[39]
Kim, T. H.; Choi, W. M.; Kim, D. H.; Meitl, M. A.; Menard, E.; Jiang, H. Q.; Carlisle, J. A.; Rogers, J. A. Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management. Adv. Mater. 2008, 20, 2171-2176.
[40]
Phan, H. P.; Zhong, Y. S.; Nguyen, T. K.; Park, Y.; Dinh, T.; Song, E. M.; Vadivelu, R. K.; Masud, M. K.; Li, J. H.; Shiddiky, M. J. A. et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 2019, 13, 11572-11581.
[41]
Pham, T. A.; Nguyen, T. K.; Vadivelu, R. K.; Dinh, T.; Qamar, A.; Yadav, S.; Yamauchi, Y.; Rogers, J. A.; Nguyen, N. T.; Phan, H. P. A versatile sacrificial layer for transfer printing of wide bandgap materials for implantable and stretchable bioelectronics. Adv. Funct. Mater. 2020, 30, 2004655.
[42]
Oh, D. W.; Kim, S.; Rogers, J. A.; Cahill, D. G.; Sinha, S. Interfacial thermal conductance of transfer-printed metal films. Adv. Mater. 2011, 23, 5028-5033.
[43]
Kim, D. H.; Song, J. Z.; Choi, W. M.; Kim, H. S.; Kim, R. H.; Liu, Z. J.; Huang, Y. Y.; Hwang, K. C.; Zhang, Y. W.; Rogers, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675-18680.
[44]
Kim, D. H.; Kim, Y. S.; Wu, J.; Liu, Z. J.; Song, J. Z.; Kim, H. S.; Huang, Y. Y.; Hwang, K. C.; Rogers, J. A. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 2009, 21, 3703-3707.
[45]
Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681-685.
[46]
Yang, S. Y.; O’Cearbhaill, E. D.; Sisk, G. C.; Park, K. M.; Cho, W. K.; Villiger, M.; Bouma, B. E.; Pomahac, B.; Karp, J. M. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 2013, 4, 1702.
[47]
Pang, C.; Kim, S. M.; Rahmawan, Y.; Suh, K. Y. Beetle-inspired bidirectional, asymmetric interlocking using geometry-tunable nanohairs. ACS Appl. Mater. Interfaces 2012, 4, 4225-4230.
[48]
Pang, C.; Kim, T. I.; Bae, W. G.; Kang, D.; Kim, S. M.; Suh, K. Y. Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers. Adv. Mater. 2012, 24, 475-479.
[49]
Chen, Y. C.; Yang, H. T. Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion. ACS Nano 2017, 11, 5332-5338.
[50]
Baik, S.; Kim, D. W.; Park, Y.; Lee, T. J.; Bhang, S. H.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396-400.
[51]
Yoon, J.; Jeong, Y.; Kim, H.; Yoo, S.; Jung, H. S.; Kim, Y.; Hwang, Y.; Hyun, Y.; Hong, W. K.; Lee, B. H. et al. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nat. Commun. 2016, 7, 11477.
[52]
Hwang, Y.; Yoo, S.; Lim, N.; Kang, S. M.; Yoo, H.; Kim, J.; Hyun, Y.; Jung, G. Y.; Ko, H. C. Enhancement of interfacial adhesion using micro/ nanoscale hierarchical cilia for randomly accessible membrane-type electronic devices. ACS Nano 2020, 14, 118-128.
[53]
Sarma, K. R. Flexible displays: TFT technology: Substrate options and TFT processing strategies. In Handbook of Visual Display Technology; Chen, J. L.; Cranton, W.; Fihn, M., Eds.; Springer: Berlin Heidelberg, 2012; pp 897-932.
[54]
Kattamis, A. Z.; Giebink, N.; Cheng, I. C.; Wagner, S.; Forrest, S. R.; Hong, Y.; Cannella, V. Active-matrix organic light-emitting displays employing two thin-film-transistor a-Si:H pixels on flexible stainless-steel foil. J. Soc. Inf. Disp. 2007, 15, 433-437.
[55]
Chuang, T. K.; Troccoli, M.; Hatalis, M.; Voutsas, A. T. Polysilicon TFT technology on flexible metal foil for AMPLED displays. J. Soc. Inf. Disp. 2007, 15, 455-461.
[56]
MacDonald, W. A.; Looney, M. K.; MacKerron, D.; Eveson, R.; Adam, R.; Hashimoto, K.; Rakos, K. Latest advances in substrates for flexible electronics. J. Soc. Inf. Disp. 2007, 15, 1075-1083.
[57]
Sharpe, W. N. Jr.; Pulskamp, J.; Gianola, D. S.; Eberl, C.; Polcawich, R. G.; Thompson, R. J. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 2007, 47, 649-658.
[58]
Park, K.; Lee, D. K.; Kim, B. S.; Jeon, H.; Lee, N. E.; Whang, D.; Lee, H. J.; Kim, Y. J.; Ahn, J. H. Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater. 2010, 20, 3577-3582.
[59]
Ong, C. W.; Zong, D. G.; Aravind, M.; Choy, C. L.; Lu, D. R. Tensile strength of zinc oxide films measured by a microbridge method. J. Mater. Res. 2003, 18, 2464-2472.
[60]
Chen, Z.; Cotterell, B.; Wang, W. The fracture of brittle thin films on compliant substrates in flexible displays. Eng. Fract. Mech. 2002, 69, 597-603.
[61]
Han, M. J.; Khang, D. Y. Glass and plastics platforms for foldable electronics and displays. Adv. Mater. 2015, 27, 4969-4974.
[62]
Yoo, J. I.; Jang, H. S.; Jang, J.; Yoon, J.; Kwon, O. Y.; Park, J. J.; Kang, S. M.; Yoo, T. J.; Kim, S. H.; Lee, B. H. et al. Reliable peripheral anchor-assisted transfer printing of ultrathin SiO2 for a transparent and flexible IGZO-based inverter. Microelectron. Eng. 2018, 197, 15-22.
[63]
Chen, J. K.; He, X. L.; Wang, W. B.; Xuan, W. P.; Zhou, J.; Wang, X. Z.; Dong, S. R.; Garner, S.; Cimo, P.; Luo, J. K. Bendable transparent ZnO thin film surface acoustic wave strain sensors on ultra-thin flexible glass substrates. J. Mater. Chem. C 2014, 2, 9109-9114.
[64]
Ghosh, D. S.; Liu, Q.; Mantilla-Perez, P.; Chen, T. L.; Mkhitaryan, V.; Huang, M. H.; Garner, S. Martorell, J.; Pruneri, V. Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells. Adv. Funct. Mater. 2015, 25, 7309-7316.
[65]
Tavakoli, M. M.; Tsui, K. H.; Zhang, Q. P.; He, J.; Yao, Y. Li, D. D.; Fan, Z. Y. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 2015, 9, 10287-10295.
[66]
Li, G. J.; Song, E. M.; Huang, G. S.; Guo, H. L.; Ma, F.; Zhou, B.; Mei, Y. F. High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes. Adv. Funct. Mater. 2018, 28, 1801448.
[67]
Chung, H. J.; Kim, T. I.; Kim, H. S.; Wells, S. A.; Jo, S.; Ahmed, N.; Jung, Y. H.; Won, S. M.; Bower, C. A.; Rogers, J. A. Fabrication of releasable single-crystal silicon-metal oxide field-effect devices and their deterministic assembly on foreign substrates. Adv. Funct. Mater. 2011, 21, 3029-3036.
[68]
Lee, E. K.; Baruah, R. K.; Leem, J. W.; Park, W.; Kim, B. H.; Urbas, A.; Ku, Z.; Kim, Y. L.; Alam, M. A.; Lee, C. H. Fractal web design of a hemispherical photodetector array with organic-dye-sensitized graphene hybrid composites. Adv. Mater. 2020, 32, 2004456.
[69]
Liu, Y. J.; Liu, Y. D.; Qin, S. C.; Xu, Y. B.; Zhang, R.; Wang, F. Q. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2017, 10, 1880-1887.
[70]
Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G. Large-area, selective transfer of microstructured silicon: A printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 2005, 17, 2332-2336.
[71]
Yoon, J.; Li. L. F.; Semichaevsky, A. V.; Ryu, J. H.; Johnson, H. T.; Nuzzo, R. G.; Rogers, J. A. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. Nat. Commun. 2011, 2, 343.
[72]
Kim, E.; Cho, H.; Kim, K.; Koh, T. W.; Chung, J.; Lee, J.; Park, Y.; Yoo, S. A facile route to efficient, low-cost flexible organic light-emitting diodes: Utilizing the high refractive index and built-in scattering properties of industrial-grade PEN substrates. Adv. Mater. 2015, 27, 1624-1631.
[73]
Yoon, J.; Sung, H.; Lee, G.; Cho, W.; Ahn, N.; Jung, H. S.; Choi, M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ. Sci. 2017, 10, 337-345.
[74]
Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, P. C.; Kim, S. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137-1145.
[75]
Koo, J.; MacEwan, M. R.; Kang, S. K.; Won, S. M.; Stephen, M.; Gamble, P.; Xie, Z. Q.; Yan, Y.; Chen, Y. Y.; Shin, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830-1836.
[76]
Bai, W. B.; Shin, J.; Fu, R. X.; Kandela, I.; Lu, D.; Ni, X. Y.; Park, Y.; Liu, Z. H.; Hang, T.; Wu, D. et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 2019, 3, 644-654.
[77]
Chang, J. K.; Chang, H. P.; Guo, Q. L.; Koo, J.; Wu, C. I.; Rogers, J. A. Biodegradable electronic systems in 3D, heterogeneously integrated formats. Adv. Mater. 2018, 30, 1704955.
[78]
Ito, H.; Oka, W.; Goto, H.; Umeda, H. Plastic substrates for flexible displays. Jpn. J. Appl. Phys. 2006, 45, 4325-4329.
[79]
Gleskova, H.; Cheng, I. C.; Wagner, S.; Suo, Z. G. Mechanical theory of the film-on-substrate-foil structure: Curvature and overlay alignment in amorphous silicon thin-film devices fabricated on free-standing foil substrates. In Flexible Electronics: Materials and Applications; Salleo, A.; Wong, W. S., Eds.; Springer: Boston, 2009; pp 29-51.
[80]
Yu, W. J.; Chae, S. H.; Lee, S. Y.; Duong, D. L.; Lee, Y. H. Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv. Mater. 2011, 23, 1889-1893.
[81]
Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488-492.
[82]
Ko, H. C.; Baca, A. J.; Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 2006, 6, 2318-2324.
[83]
Mack, S.; Meitl, M. A.; Baca, A. J.; Zhu, Z. T.; Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 2006, 88, 213101.
[84]
Hwang, Y.; Cho, H. A.; Kim, S. H.; Jang, H. S.; Hyun, Y.; Chun, J. Y.; Park, S. J.; Ko, H. C. Printable ultrathin substrates formed on a concave-convex underlayer for highly flexible membrane-type electrode stickers. Soft Matter 2012, 8, 7598-7603.
[85]
Kim, S. H.; Yoon, J.; Yun, S. O.; Hwang, Y.; Jang, H. S.; Ko, H. C. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv. Funct. Mater. 2013, 23, 1375-1382.
[86]
Kim, S.; Son, J. H.; Lee, S. H.; You, B. K.; Park, K. I.; Lee, H. K.; Byun, M.; Lee, K. J. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv. Mater. 2014, 26, 7480-7487.
[87]
Kim, D. H.; Yoo, H. G.; Hong, S. M.; Jang, B.; Park, D. Y.; Joe, D. J.; Kim, J. H.; Lee, K. J. Simultaneous roll transfer and interconnection of flexible silicon NAND flash memory. Adv. Mater. 2016, 28, 8371-8378.
[88]
Kim, D. H.; Lee, H. E.; You, B. K.; Cho, S. B.; Mishra, R.; Kang, I. S.; Lee, K. J. Flexible crossbar-structured phase change memory array via Mo-based interfacial physical lift-off. Adv. Funct. Mater. 2019, 29, 1806338.
[89]
Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; Gomez, L.; de Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73-79.
[90]
Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
[91]
Kim, S.; Wu, J.; Carlson, A.; Jin, S. H.; Kovalsky, A.; Glass, P.; Liu, Z. J.; Ahmed, N.; Elgan, S. L.; Chen, W. Q. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl. Acad. Sci. USA 2010, 107, 17095-17100.
[92]
Carlson, A.; Kim-Lee, H. J.; Wu, J.; Elvikis, P.; Cheng, H. Y.; Kovalsky, A.; Elgan, S.; Yu, Q. M.; Ferreira, P. M.; Huang, Y. G. et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 2011, 98, 264104.
[93]
Yang, Y. M.; Hwang, Y.; Cho, H. A.; Song, J. H.; Park, S. J.; Rogers, J. A.; Ko, H. C. Arrays of silicon micro/nanostructures formed in suspended configurations for deterministic assembly using flat and roller-type stamps. Small 2011, 7, 484-491.
[94]
Keum, H.; Yang, Z. N.; Han, K. W.; Handler, D. E.; Nguyen, T. N.; Schutt-Aine, J.; Bahl, G.; Kim, S. Microassembly of heterogeneous materials using transfer printing and thermal processing. Sci. Rep. 2016, 6, 29925.
[95]
Yoon, J.; Jo, S.; Chun I. S.; Jung, I.; Kim, H. S.; Meitl, M.; Menard, E.; Li, X. L.; Coleman, J. J.; Paik, U. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 2010, 465, 329-333.
[96]
Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0038.
[97]
Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897-1916.
[98]
Linghu, C. H.; Zhang, S.; Wang, C. J.; Song, J. Z. Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flex. Electron. 2018, 2, 26.
[99]
Carlson, A.; Bowen, A. M.; Huang, Y. G.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/ nanodevice fabrication. Adv. Mater. 2012, 24, 5284-5318.
[100]
Wang, S. D.; Li, M.; Wu, J.; Kim, D. H.; Lu, N. S.; Su, Y. W.; Kang, Z.; Huang, Y. G.; Rogers, J. A. Mechanics of epidermal electronics. J. Appl. Mech. 2012, 79, 031022.
[101]
Autumn, K.; Sitti, M.; Liang, Y. A.; Peattie, A. M.; Hansen, W. R.; Sponberg, S.; Kenny, T. W.; Fearing, R.; Israelachvili, J. N.; Full, R. J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252-12256.
[102]
Huber, G.; Mantz, H. Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S. N.; Arzt, E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16293-16296.
[103]
Autumn, K.; Dittmore, A.; Santos, D.; Spenko, M.; Cutkosky, M. Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 2006, 209, 3569-3579.
[104]
Zhao, B. X.; Pesika, N.; Rosenberg, K.; Tian, Y.; Zeng, H. B.; McGuiggan, P.; Autumn, K.; Israelachvili, J. Adhesion and friction force coupling of gecko setal arrays: Implications for structured adhesive surfaces. Langmuir 2008, 24, 1517-1524.
[105]
Zhao, B. X.; Pesika, N.; Zeng, H. B.; Wei, Z. S.; Chen, Y. F.; Autumn, K.; Turner, K. Israelachvili, J. Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems. J. Phys. Chem. B 2009, 113, 3615-3621.
[106]
Bartlett, M. D.; Croll, A. B.; King, D. R.; Paret, B. M.; Irschick, D. J.; Crosby, A. J. Looking beyond fibrillar features to scale gecko-like adhesion. Adv. Mater. 2012, 24, 1078-1083.
[107]
Bartlett, M. D.; Crosby, A. J. High capacity, easy release adhesives from renewable materials. Adv. Mater. 2014, 26, 3405-3409.
[108]
Wang, L.; Ha, K. H.; Rodin, G. J.; Liechti, K. M.; Lu, N. S. Mechanics of crater-enabled soft dry adhesives: A review. Front. Mech. Eng. 2020, 6, 601510.
[109]
Lee, J.; Majidi, C.; Schubert, B.; Fearing, R. S. Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. J. Roy. Soc. Interface 2008, 5, 835-844.
[110]
Lu, G. W.; Hong, W. J.; Tong, L.; Bai, H.; Wei, Y.; Shi, G. Q. Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces. ACS Nano 2008, 2, 2342-2348.
[111]
Zhao, Y.; Tong, T.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J. Vac. Sci. Technol. B 2006, 24, 331-335.
[112]
Hu, H.; Tian, H. M.; Shao, J. Y.; Li, X. M.; Wang, Y.; Wang, Y.; Tian, Y.; Lu, B. H. Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface. ACS Appl. Mater. Interfaces 2017, 9, 7752-7760.
[113]
Tao, D. S.; Gao, X.; Lu, H. Y.; Liu, Z. Y.; Li, Y.; Tong, H.; Pesika, N.; Meng, Y. G.; Tian, Y. Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting. Adv. Funct. Mater. 2017, 27, 1606576.
[114]
Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Y.; Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461-463.
[115]
Murphy, M. P.; Aksak, B.; Sitti, M. Gecko-inspired directional and controllable adhesion. Small 2009, 5, 170-175.
[116]
del Campo, A.; Greiner, C.; Arzt, E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 2007, 23, 10235-10243.
[117]
del Campo, A.; Greiner, C.; Álvarez, I.; Arzt, E. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv. Mater. 2007, 19, 1973-1977.
[118]
Arzt, E.; Gorb, S.; Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 2003, 100, 10603-10606.
[119]
Aksak, B.; Murphy M. P.; Sitti, M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 2007, 23, 3322-3332.
[120]
Gao, H. J.; Wang, X.; Yao, H. M.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 2005, 37, 275-285.
[121]
Hu, C. C.; Greaney, P. A. Role of seta angle and flexibility in the gecko adhesion mechanism. J. Appl. Phys. 2014, 116, 074302.
[122]
Bhushan, B.; Peressadko, A. G.; Kim, T. W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ‘smart adhesion. J. Adhes. Sci. Technol. 2006, 20, 1475-1491.
[123]
Murphy, M. P.; Kim, S.; Sitti, M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 2009, 1, 849-855.
[124]
del Campo, A.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81-R95.
[125]
Röhrig, M.; Thiel, M.; Worgull, M.; Hölscher, H. 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 2012, 8, 3009-3015.
[126]
Tricinci, O.; Eason, E. V.; Filippeschi, C.; Mondini, A.; Mazzolai, B.; Pugno, N. M.; Cutkosky, M. R.; Greco, F.; Mattoli, V. Dry adhesion of artificial gecko setae fabricated via direct laser lithography. In Biomimetic and Biohybrid Systems; Mangan, M.; Cutkosky, M.; Mura, A.; Verschure, P. F. M. J.; Prescott, T.; Lepora, N., Eds.; Springer: Cham, 2017; pp 631-636.
[127]
Greiner, C.; Arzt, E.; del Campo, A. Hierarchical gecko-like adhesives. Adv. Mater. 2009, 21, 479-482.
[128]
Zhang, E. S.; Liu, Y. Y.; Yu, J. X.; Lv, T.; Li, L. Fabrication of hierarchical gecko-inspired microarrays using a three-dimensional porous nickel oxide template. J. Mater. Chem. B 2015, 3, 6571-6575.
[129]
Jeong, H. E.; Lee, J. K.; Kim, H. N.; Moon, S. H.; Suh, K. Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl. Acad. Sci. USA 2009, 106, 5639-5644.
[130]
Raut, H. K.; Baji, A.; Hariri, H. H.; Parveen, H.; Soh, G. S.; Low, H. Y.; Wood, K. L. Gecko-inspired dry adhesive based on micro-nanoscale hierarchical arrays for application in climbing devices. ACS Appl. Mater. Interfaces 2018, 10, 1288-1296.
[131]
Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338-341.
[132]
Ma, Y. F.; Ma, S. H.; Wu, Y.; Pei, X. W.; Gorb, S. N.; Wang, Z. K.; Liu, W. M.; Zhou, F. Remote control over underwater dynamic attachment/detachment and locomotion. Adv. Mater. 2018, 30, 1801595.
[133]
Yoo, B.; Cho, S.; Seo, S.; Lee, J. Elastomeric angled microflaps with reversible adhesion for transfer-printing semiconductor membranes onto dry surfaces. ACS Appl. Mater. Interfaces 2014, 6, 19247-19253.
[134]
Sun, Y. G.; Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953-1959.
[135]
Mengüç, Y.; Yang, S. Y.; Kim, S.; Rogers, J. A.; Sitti, M. Gecko-inspired controllable adhesive structures applied to micromanipulation. Adv. Funct. Mater. 2012, 22, 1246-1254.
[136]
Kim, S.; Carlson, A.; Cheng, H. Y.; Lee, S.; Park, J. K.; Huang, Y. G.; Rogers, J. A. Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing. Appl. Phys. Lett. 2012, 100, 171909.
[137]
Jeong, J.; Kim, J.; Song, K.; Autumn, K.; Lee, J. Geckoprinting: Assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays. J. Roy. Soc. Interface 2014, 11, 20140627.
[138]
Tian, H. M.; Liu, H. R.; Shao, J. Y.; Li, S.; Li, X. M.; Chen, X. M. An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko's adhesive structures and toe muscles. Soft Matter 2020, 16, 5599-5608.
[139]
Li, S.; Tian, H. M.; Shao, J. Y.; Liu, H. R.; Wang, D. R.; Zhang, W. T. Switchable adhesion for nonflat surfaces mimicking geckos' adhesive structures and toe muscles. ACS Appl. Mater. Interfaces 2020, 12, 39745-39755.
[140]
Li, Q. L. A practical fabrication method of the gecko-inspired easy-removal skin adhesive. Biosurf. Biotribol. 2017, 3, 66-74.
[141]
Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J. W.; Chan, E. P.; Carter, D. J. D.; Bettinger, C. J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl. Acad. Sci. USA 2008, 105, 2307-2312.
[142]
Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353.
[143]
Gao, B. B.; Wang, X.; Li, T.; Feng, Z. Q.; Wang, C. Y.; Gu, Z. Z. Gecko-inspired paper artificial skin for intimate skin contact and multisensing. Adv. Mater. Technol. 2019, 4, 1800392.
[144]
Hammond, R. A. The proboscis mechanism of Acanthocephalus Ranae. J. Exp. Biol. 1966, 45, 203-213.
[145]
Emde, S.; Rueckert, S.; Palm, H. W.; Klimpel, S. Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the river rhine. PLoS One 2012, 7, e53218.
[146]
Wang, H.; Pastorin, G.; Lee, C. Toward self-powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery. Adv. Sci. 2016, 3, 1500441.
[147]
Lee, S.; Lahiji, S. F.; Jang, J.; Jang, M.; Jung, H. Micro-pillar integrated dissolving microneedles for enhanced transdermal drug delivery. Pharmaceutics 2019, 11, 402.
[148]
Chew, S. W. T.; Shah, A. H.; Zheng, M. J.; Chang, H.; Wiraja, C.; Steele, T. W. J.; Xu, C. J. A self-adhesive microneedle patch with drug loading capability through swelling effect. Bioeng. Transl. Med. 2020, 5, e10157.
[149]
Amer, M.; Chen, R. K. Self-adhesive microneedles with interlocking features for sustained ocular drug delivery. Macromol. Biosci. 2020, 20, 2000089.
[150]
Jeon, E. Y.; Lee, J.; Kim, B. J.; Joo, K. I.; Kim, K. H.; Lim, G.; Cha, H. J. Bio-inspired swellable hydrogel-forming double-layered adhesive microneedle protein patch for regenerative internal/external surgical closure. Biomaterials 2019, 222, 119439.
[151]
Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater. 2017, 29, 1603382.
[152]
Gorb, S. N. Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae): Design of co-opted fields of microtrichia and cuticle ultrastructure. Int. J. Insect Morphol. Embryol. 1998, 27, 205-225.
[153]
Leckband, D.; Israelachvili, J. Intermolecular forces in biology. Quart. Rev. Biophys. 2001, 34, 105-267.
[154]
Rahmawan, Y.; Kang, S. M.; Lee, S. Y.; Suh, K. Y.; Yang, S. Enhanced shear adhesion by mechanical interlocking of dual-scaled elastomeric micropillars with embedded silica particles. Macromol. React. Eng. 2013, 7, 616-623.
[155]
Chen, C. M.; Chiang, C. L.; Lai, C. L.; Xie, T.; Yang, S. Buckling-based strong dry adhesives via interlocking. Adv. Funct. Mater. 2013, 23, 3813-3823.
[156]
Pu, L.; Saraf, R.; Maheshwari, V. Bio-inspired interlocking random 3-D structures for tactile and thermal sensing. Sci. Rep. 2017, 7, 5834.
[157]
Park, J.; Lee, Y.; Hong, J.; Lee, Y.; Ha, M.; Jung, Y.; Lim, H.; Kim, S. Y.; Ko, H. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014, 8, 12020-12029.
[158]
Pang, C.; Lee, G. Y.; Kim, T. L.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795-801.
[159]
Cheng, L.; Qian, W.; Wei, L.; Zhang, H. J.; Zhao, T. Y.; Li, M.; Liu, A. P.; Wu, H. P. A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions. J. Mater. Chem. C 2020, 8, 11525-11531.
[160]
Baik, S.; Kim, N.; Kim, T. I.; Chae, H.; Kim, K. H.; Pang, C.; Suh, K. Y. Theoretical analysis of flexible strain-gauge sensor with nanofibrillar mechanical interlocking. Curr. Appl. Phys. 2015, 15, 274-278.
[161]
Wang, P.; Ju, Y.; Cui, Y. B.; Hosoi, A. Copper/parylene core/shell nanowire surface fastener used for room-temperature electrical bonding. Langmuir 2013, 29, 13909-13916.
[162]
Lee, C.; Kim, S. M.; Kim, Y. J.; Choi, Y. W.; Suh, K, Y.; Pang, C.; Choi, M. Robust microzip fastener: Repeatable interlocking using polymeric rectangular parallelepiped arrays. ACS Appl. Mater. Interfaces 2015, 7, 2561-2568.
[163]
Wang, P.; Ju, Y.; Chen, M. J. Room-temperature electrical bonding technique based on Copper/polystyrene core/Shell nanowire surface fastener. Appl. Surf. Sci. 2015, 349, 774-779.
[164]
Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41, 99-132.
[165]
Zhao, Q.; Lee, D. W.; Ahn, B. K.; Seo, S.; Kaufman, Y.; Israelachvili, J. N.; Waite, J. H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 2016, 15, 407-412.
[166]
Zhao, Y. H.; Wu, Y.; Wang, L.; Zhang, M. M.; Chen, X.; Liu, M. J.; Fan, J.; Liu, J. Q.; Zhou, F.; Wang, Z. K. Bio-inspired reversible underwater adhesive. Nat. Commun. 2017, 8, 2218.
[167]
Kim, K.; Shin, M.; Koh, M. Y.; Ryu, J. H.; Lee, M. S.; Hong, S.; Lee, H. TAPE: A medical adhesive inspired by a ubiquitous compound in plants. Adv. Funct. Mater. 2015, 25, 2402-2410.
[168]
Tramacere, F.; Beccai, L.; Kuba, M.; Gozzi, A.; Bifone, A.; Mazzolai, B. The morphology and adhesion mechanism of Octopus vulgaris suckers. PLoS One 2013, 8, e65074.
[169]
Tramacere, F.; Kovalev, A.; Kleinteich, T.; Gorb, S. N.; Mazzolai, B. Structure and mechanical properties of Octopus vulgaris suckers. J. Roy. Soc. Interface 2014, 11, 20130816.
[170]
Kim, D. W.; Baik, S.; Min, H.; Chun, S.; Lee, H. J.; Kim, K. H.; Lee, J. Y.; Pang, C. Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv. Funct. Mater. 2019, 29, 1807614.
[171]
Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H. J.; Ko. H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater. 2016, 28, 7457-7465.
[172]
Baik, S.; Lee, H. J.; Kim, D. W.; Min, H.; Pang, C. Capillarity-enhanced organ-attachable adhesive with highly drainable wrinkled octopus-inspired architectures. ACS Appl. Mater. Interfaces 2019, 11, 25674-25681.
[173]
Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z. Q.; Ibler, E. M.; Lee, K. H.; Banks, A.; Jeong, J. Y.; Kim, J. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363, eaau0780.
[174]
Junghähnel, M.; Garner, S. Glass meets flexibility: Challenges in manufacturing of thin films on flexible glass. Vak. Forsch. Prax. 2014, 26, 35-39.
Nano Research
Pages 3143-3158
Cite this article:
Yoo JI, Kim SH, Ko HC. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Research, 2021, 14(9): 3143-3158. https://doi.org/10.1007/s12274-021-3533-6
Topics:
Part of a topical collection:

804

Views

11

Crossref

11

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 06 January 2021
Revised: 07 April 2021
Accepted: 21 April 2021
Published: 20 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return