AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring

Xiaowen Xu1Yucheng Chen1Pei He1( )Song Wang1Kai Ling1Longhui Liu1Pengfei Lei2Xianjun Huang3Hu Zhao4Jianyun Cao4Junliang Yang1( )
Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Department of Orthopedic Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha 410007, China
College of Electronic Science, National University of Defense Technology, Changsha 410072, China
Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
Show Author Information

Graphical Abstract

Abstract

Strain sensors with good stability are vital to the development of wearable healthcare monitoring systems. However, the design of strain sensor with both duration stability and environmental stability is still a challenge. In this work, we propose an ultra-stable and washable strain sensor by embedding a coupled composite film of carbon nanotube (CNT) and Ti3C2Tx MXene into polydimethylsiloxane (PDMS) matrix. The composite strain sensor with embedded microstructure and uneven surface makes it conformal to skin, while the CNT/MXene sensing layer exhibits a resistance sensitive to strain. This sensor shows reliable responses at different frequencies and with long-term cycling durability (over 1,000 cycles). Meanwhile, the CNT/MXene/PDMS composite strain sensor provides the advantages of superior anti-interference to temperature change and water washing. The results demonstrate less than 10% resistance changes as the temperature rises from -20 to 80 °C or after sonication in water for 120 min, respectively. The composite sensor is applied to monitor human joint motions, such as bending of finger, wrist and elbow. Moreover, the simultaneous monitoring of the electrocardiogram (ECG) signal and joint movement while riding a sports bicycle is demonstrated, enabling the great potential of the as-fabricated sensor in real-time human healthcare monitoring.

Electronic Supplementary Material

Download File(s)
12274_2021_3536_MOESM1_ESM.pdf (3.3 MB)

References

[1]
Wang, C. F.; Pan, C. F.; Wang, Z. L. Electronic skin for closed-loop systems. ACS Nano 2019, 13, 12287-12293.
[2]
Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70-74.
[3]
Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465-1491.
[4]
Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244-1252.
[5]
Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467-475.
[6]
Yeo, J. C.; Yap, H. K.; Xi, W.; Wang, Z. P.; Yeow, C. H.; Lim, C. T. Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv. Mater. Technol. 2016, 1, 1600018.
[7]
Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686-1692.
[8]
Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789-1795.
[9]
Liu, Y.; Shi, X. L.; Liu, S. R.; Li, H. P.; Zhang, H. L.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy 2019, 63, 103898.
[10]
Yang, H. T.; Xiao, X.; Li, Z. P.; Li, K. R.; Cheng, N.; Li, S.; Low, J. H.; Jing, L.; Fu, X. M.; Achavananthadith, S. et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860-11875.
[11]
Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938-1955.
[12]
Huang, S. Y.; Liu, Y.; Zhao, Y.; Ren, Z. F.; Guo, C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924.
[13]
Deng, C. H.; Gao, X. P.; Lan, L. F.; He, P. H.; Zhao, X.; Zheng, W.; Chen, W. S.; Zhong, X. Z.; Wu, Y. H.; Liu, L. et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene. Adv. Funct. Mater. 2019, 29, 1907151.
[14]
Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678-1698.
[15]
Wu, S. Y.; Peng, S. H.; Yu, Y. Y.; Wang, C. H. Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. 2020, 5, 1900908.
[16]
Zhou, P. D.; Zhang, W.; Chen, L. Z.; Lin, J.; Luo, Z. L.; Liu, C. H.; Jiang, K. L. Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions. Nano Res. 2021, .
[17]
He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884-5890.
[18]
Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919-926.
[19]
Cheng, Y.; Wang, R. R.; Zhai, H. T.; Sun, J. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 2017, 9, 3834-3842.
[20]
Luo, C. S.; Tian, B.; Liu, Q.; Feng, Y.; Wu, W. One-step-printed, highly sensitive, textile-Based, tunable performance strain sensors for human motion detection. Adv. Mater. Technol. 2020, 5, 1900925.
[21]
Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014, 6, 11932-11939.
[22]
Woo, J.; Lee, H.; Yi, C.; Lee, J.; Won, C.; Oh, S.; Jekal, J.; Kwon, C.; Lee, S.; Song, J. et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Adv. Funct. Mater. 2020, 30. 1910026.
[23]
Zhang, D.; Song, Y. D.; Ping, L.; Xu, S. W.; Yang, D.; Wang, Y. H.; Yang, Y. Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 2019, 12, 2982-2987.
[24]
Wei Y. H.; Qiao, Y. C.; Jiang, G. Y.; Wang, Y. F.; Wang, F. W.; Li, M. R.; Zhao, Y. F.; Tian, Y.; Gou, G. Y.; Tan, S. Y. et al. A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 2019, 13, 8639-8647.
[25]
Liang, B. H.; Lin, Z. Q.; Chen, W. J.; He, Z. F.; Zhong, J.; Zhu, H.; Tang, Z. K.; Gui, X. C. Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale 2018, 10, 13599-13606.
[26]
Zhang, S.; Wen, L.; Wang, H.; Zhu, K.; Zhang, M. Vertical CNT-ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. J. Mater. Chem. C 2018, 6, 5132-5139.
[27]
Amjadi, M.; Pichitpajongkit, A.; Lee, L.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire- elastomer nanocomposite. ACS Nano 2014, 8, 5154-5163.
[28]
Tian, H.; Shu, Y.; Cui, Y. L.; Mi, W. T.; Yang, Y.; Xie, D.; Ren, T. L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699-705.
[29]
Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014, 24, 4666-4670.
[30]
Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.
[31]
Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2020, .
[32]
Huang, J. Y.; Li, D. W.; Zhao, M.; Mensah, A.; Lv, P. F.; Tian, X. J.; Huang, F. L.; Ke, H. Z.; Wei, Q. F. Highly sensitive and stretchable CNT-Bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Funct. Mater. 2019, 5, 1900241.
[33]
Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly (dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548-7556.
[34]
Dong, X. C.; Wei, Y.; Chen, S.; Lin, Y.; Liu, L.; Li, J. A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 2018, 155, 108-116.
[35]
Shi, X. L.; Liu, S. R.; Sun, Y.; Liang, J. J.; Chen, Y. S. Lowering internal friction of 0D-1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 2018, 28, 1800850.
[36]
Roh, E.; Hwang, B. U.; Kim, D.; Kim, B. Y.; Lee, N. E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252-6261.
[37]
Liu, X.; Liu, D.; Lee, J. H.; Zheng, Q. B.; Du, X. H.; Zhang, X. Y.; Xu, H. R.; Wang, Z. Y.; Wu, Y.; Shen, X. et al. Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 2282-2294.
[38]
Nur, R.; Matsuhisa, N.; Jiang, Z.; Nayeem, O. G.; Yokota, T.; Someya, T. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films. Nano Lett. 2018, 18, 5610-5617.
[39]
Zhang, R.; Ying, C.; Gao, H.; Liu, Q. T.; Fu, X. D.; Hu, S. F. Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Compos. Sci. Technol. 2019, 171, 218-225.
[40]
Tian, B.; Yao, W. J.; Zeng, P.; Li, X.; Wang, H. J.; Liu, L.; Feng, Y.; Luo, C. S.; Wu, W. All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J. Mater. Chem. C 2019, 7, 809-818.
[41]
Wu, W. Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 2019, 20, 187-224.
[42]
Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen, G. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2021, 14, 699-706.
[43]
Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196-202.
[44]
Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano, 2019, 13, 649-659.
[45]
Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Si, W. L.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2020, 2038560.
[46]
Wang, T.; Wang, T. J.; Weng, C. X.; Liu, L. Q.; Zhao, J.; Zhang, Z. Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites. Nano Res. 2021, .
[47]
Pu, J. H.; Zhao, X.; Zha, X. J.; Bai, L.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 2019, 7, 15913-15923.
[48]
Yang, Y. N.; Cao, Z. R.; He, P.; Shi, L. J.; Ding, G. Q.; Wang, R. R.; Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 2019, 66, 104134.
[49]
Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56-62.
[50]
Xu, X. W.; Luo, M.; He, P.; Yang, J. L. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. J. Phys. D: Appl. Phys. 2020, 53, 125402.
[51]
Jin, L. H.; Chortos, A.; Lian, F. F.; Pop, E.; Linder, C.; Bao, Z. N.; Cai, W. Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors. Proc. Natl. Acad. Sci. USA 2018, 115, 1986-1991.
[52]
Xiang, D.; Zhang, X. Z.; Li, Y. T.; Harkin-Jones E.; Zheng, Y. F.; Wang, L.; Zhao, C. X.; Wang, P. Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions. Compos. B Eng. 2019, 176, 107250.
[53]
Zhou, Y. J.; Zhan, P. F.; Ren, M. N.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 7405-7414.
[54]
Xu, X. W.; Liu, Z. F.; He, P.; Yang, J. L. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J. Phys. D: Appl. Phys. 2019, 52, 455401.
Nano Research
Pages 2875-2883
Cite this article:
Xu X, Chen Y, He P, et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Research, 2021, 14(8): 2875-2883. https://doi.org/10.1007/s12274-021-3536-3
Topics:

1008

Views

144

Crossref

131

Web of Science

139

Scopus

5

CSCD

Altmetrics

Received: 17 March 2021
Revised: 20 April 2021
Accepted: 22 April 2021
Published: 22 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return