AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Energy band engineering via "Bite" defect located on N = 8 armchair graphene nanoribbons

Shijie Sun1Yurou Guan1Zhenliang Hao1Zilin Ruan1Hui Zhang1Jianchen Lu1Lei Gao2Xiaoqing Zuo1Jinming Cai1( )
Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming,650000,China;
Faculty of Science,Kunming University of Science and Technology,Kunming,650000,China;
Show Author Information

Graphical Abstract

Abstract

Graphene nanoribbons (GNRs) not only share many superlative properties of graphene but also display an exceptional degree of tunability of their electronic properties. The bandgaps of GNRs depend greatly on their widths, edges, etc. Herein, we report the synthesis path and the physical properties of atomic accuracy staggered narrow N = 8 armchair graphene nanoribbons (sn-8AGNR) with alternating "Bite" defects on the opposite side. The intermediate structures in the surface physicochemical reactions from the precursors to the sn-8AGNR are characterized by scanning tunneling microscopy. The electronic properties of the sn-8AGNR are characterized by scanning tunneling spectroscopies and dI/dV mappings. Compared with the perfect N = 8 armchair graphene nanoribbons (8AGNR), the sn-8AGNR has a larger bandgap, indicating that the "Bite" edges can effectively regulate the electronic structures of GNRs.

Electronic Supplementary Material

Download File(s)
12274_2021_3539_MOESM1_ESM.pdf (4.2 MB)

References

1

Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M. V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S. O.; Peña, D. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 2018, 360, 199-203.

2

Llinas, J. P.; Fairbrother, A.; Barin, G. B.; Shi, W.; Lee, K.; Wu, S.; Choi, B. Y.; Braganza, R.; Lear, J.; Kau, N. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 2017, 8, 633.

3

Merino-Díez, N.; Garcia-Lekue, A.; Carbonell-Sanromà, E.; Li, J. C.; Corso, M.; Colazzo, L.; Sedona, F.; Sánchez-Portal, D.; Pascual, J. I.; de Oteyza, D. G. Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111). ACS Nano 2017, 11, 11661-11668.

4

Mishra, S.; Krzeszewski, M.; Pignedoli, C. A.; Ruffieux, P.; Fasel, R.; Gryko, D. T. On-surface synthesis of a nitrogen-embedded buckybowl with inverse stone-thrower-wales topology. Nat. Commun. 2018, 9, 1714.

5

Zhou, X. H.; Yu, G. Modified engineering of graphene nanoribbons prepared via on-surface synthesis. Adv. Mater. 2020, 32, 1905957.

6

Wu, S.; Liu, B.; Shen, C.; Li, S.; Huang, X. C.; Lu, X. B.; Chen, P.; Wang, G. L.; Wang, D. M.; Liao, M. Z. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett. 2018, 120, 216601.

7

Martin-Martinez, F. J.; Fias, S.; Van Lier, G.; De Proft, F.; Geerlings, P. Tuning aromaticity patterns and electronic properties of armchair graphenenanoribbons with chemical edge functionalisation. Phys. Chem. Chem. Phys. 2013, 15, 12637-12647.

8

Moreno, C.; Panighel, M.; Vilas-Varela, M.; Sauthier, G.; Tenorio, M.; Ceballos, G.; Peña, D.; Mugarza, A. Critical role of phenyl substitution and catalytic substrate in the surface-assisted polymerization of dibromobianthracene derivatives. Chem. Mater. 2019, 31, 331-341.

9

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470-473.

10

Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. On-surface synthesis of 8-and 10-armchair graphene nanoribbons. Small 2019, 15, 1804526.

11

Ji, P. H.; MacLean, O.; Galeotti, G.; Dettmann, D.; Berti, G.; Sun, K. W.; Zhang, H. M.; Rosei, F.; Chi, L. F. Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu (111). Sci. China Chem. 2021, 64, 636-641.

12

Thussing, S.; Flade, S.; Eimre, K.; Pignedoli, C. A.; Fasel, R.; Jakob, P. Reaction pathway toward seven-atom-wide armchair graphene nanoribbon formation and identification of intermediate species on Au (111). J. Phys. Chem. C 2020, 124, 16009-16018.

13

Keerthi, A.; Sánchez-Sánchez, C.; Deniz, O.; Ruffieux, P.; Schollmeyer, D.; Feng, X. L.; Narita, A.; Fasel, R.; Müllen, K. On-surface synthesis of a chiral graphene nanoribbon with mixed edge structure. Chem. -An Asian J. 2020, 15, 3807-3811.

14

Ma, C. X.; Xiao, Z. C.; Zhang, H. H.; Liang, L. B.; Huang, J. S.; Lu, W. C.; Sumpter, B. G.; Hong, K. L.; Bernholc, J.; Li, A. P. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. Nat. Commun. 2017, 8, 14815.

15

Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Müllen, K.; Lin, X. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377-3384.

16

Wang, S. Y.; Talirz, L.; Pignedoli, C. A.; Feng, X. L.; Müllen, K.; Fasel, R.; Ruffieux, P. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 2016, 7, 11507.

17

Gröning, O.; Wang, S. Y.; Yao, X. L.; Pignedoli, C. A.; Barin, G. B.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X. L.; Narita, A. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 2018, 560, 209-213.

18

Chen, Z.; Narita, A.; Müllen, K. Graphene nanoribbons: On-surface synthesis and integration into electronic devices. Adv. Mater. 2020, 32, 2001893.

19
Pizzochero, M.; Čerņevičs, K.; Barin, G. B.; Wang, S. Y.; Ruffieux, P.; Fasel, R.; Yazyev, O. V. Quantum electronic transport across "bite" defects in graphene nanoribbons [Online]. arXiv: 2006.15075, 2020;https://ui.adsabs.harvard.edu/abs/2020arXiv200615075P (accessed Jun 1, 2020).
20

Pham, T. A.; Tran, B. V.; Nguyen, M. T.; Stöhr, M. Chiral-selective formation of 1D polymers based on ullmann-type coupling: The role of the metallic substrate. Small 2017, 13, 1603675.

21

Sun, Q.; Gröning, O.; Overbeck, J.; Braun, O.; Perrin, M. L.; Barin, G. B.; El Abbassi, M.; Eimre, K.; Ditler, E.; Daniels, C. et al. Massive Dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary. Adv. Mater. 2020, 32, 1906054.

22

Di Giovannantonio, M.; Eimre, K.; Yakutovich, A. V.; Chen, Q.; Mishra, S.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Narita, A. et al. On-surface synthesis of antiaromatic and open-shell indeno[2, 1-b]fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 2019, 141, 12346-12354.

23

Nguyen, G. D.; Tsai, H. Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017, 12, 1077-1082.

24

Cao, Y.; Qi, J.; Zhang, Y. F.; Huang, L.; Zheng, Q.; Lin, X.; Cheng, Z. H.; Zhang, Y. Y.; Feng, X. L.; Du, S. et al. Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Res. 2018, 11, 6190-6196.

25

Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.

26

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. Wsxm: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

27

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 1993, 47, 558-561.

28

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.

29

Perdew, J. P.; Burke, K.; Ernzerhof, M. Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 1998, 80, 891.

30

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.

Nano Research
Pages 653-658
Cite this article:
Sun S, Guan Y, Hao Z, et al. Energy band engineering via "Bite" defect located on N = 8 armchair graphene nanoribbons. Nano Research, 2022, 15(1): 653-658. https://doi.org/10.1007/s12274-021-3539-0
Topics:

932

Views

18

Crossref

16

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 01 January 2021
Revised: 13 April 2021
Accepted: 26 April 2021
Published: 09 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return