AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interplay between invasive single atom Pt and native oxygen vacancy in rutile TiO2(110) surface: A theoretical study

Xiaoyang Wang1Liang Zhang2Yuxiang Bu3Wenming Sun1( )
Department of Chemistry China Agricultural UniversityBeijing 100193 China
Dassault Systemes (Shanghai) Information Technology Co., Ltd.Shanghai 200120 China
Department of Chemistry, Shandong UniversityJinan 250100 China
Show Author Information

Graphical Abstract

Abstract

Oxygen vacancy (Ov) as well as Ov migration in metal oxide are of great importance in structural evolution of active center in single-atom catalysts (SACs). Here, the interplay between invasive single Pt atom and native Ov in SA-Pt/rutile TiO2(110) surface, as well as their synergetic effect on water dissociation are investigated by density functional theory (DFT) calculations. We show that importing Pt atom as Pt-ads, Pt2c, Pt5c and Pt6c modes could decelerate the Ov migration effectively, especially in Pt6c mode. Under oxygen-rich conditions, Pt6c substitution could make oxygen Ov formation easier, but migration harder. On Pt6c/Ti1-yO2-x1(110) surface, as a bimetal center, Pt4c-Ti5c concave could not make water dissociation process easier; however, the O2c closed to Pt become a good proton acceptor to make water dissociation on Ti5c-O2c more convenient with the aid of topmost Ti5c.

Electronic Supplementary Material

Download File(s)
12274_2021_3542_MOESM1_ESM.pdf (1.6 MB)

References

1

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.

2

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.

3

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.

4

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80-83.

5

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: 10.1007/s12274- 020-3244-4.

6

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater., in press, DOI: 10.1007/s40843-020- 1579-7.

7

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.

8

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.

9

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.

10

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal- organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212-3221.

11

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2170006.

12

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764-772.

13

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal- support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

14

Sykes, E. C. H.; Christopher, P. Recent advances in single-atom catalysts and single-atom alloys: Opportunities for exploring the uncharted phase space in-between. Curr. Opin. Chem. Eng. 2020, 29, 67-73.

15

Resasco, J.; DeRita, L.; Dai, S.; Chada, J. P.; Xu, M. J.; Yan, X. X.; Finzel, J.; Hanukovich, S.; Hoffman, A. S.; Graham, G. W. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169-184.

16

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620-626.

17

Lu, Y. B.; Wang, J. M.; Yu, L.; Kovarik, L.; Zhang, X. W.; Hoffman, A. S.; Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149-156.

18

Humphrey, N.; Bac, S.; Sharada, S. M. Ab initio molecular dynamics reveals new metal-binding sites in atomically dispersed Pt1/TiO2 catalysts. J. Phys. Chem. C 2020, 124, 24187-24195.

19

Wang, Y. G.; Mei, D. H.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria- supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.

20

Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215-1221.

21

DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746-751.

22

Tang, Y.; Asokan, C.; Xu, M. J.; Graham, G. W.; Pan, X. Q.; Christopher, P.; Li, J.; Sautet, P. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 2019, 10, 4488.

23

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407-7410.

24

Hoang, S.; Guo, Y. B.; Binder, A. J.; Tang, W. X.; Wang, S.; Liu, J. Y.; Tran, H.; Lu, X. X.; Wang, Y.; Ding, Y. et al. Activating low- temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.

25

Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemos­elective hydrogenation of 3-nitrostyrene. Nat Catal. 2019, 2, 873-881.

26

Yu, F.; Wang, C. H.; Ma, H.; Song, M.; Li, D. S.; Li, Y. Y.; Li, S. M.; Zhang, X. T.; Liu, Y. C. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2. Nanoscale 2020, 12, 7000-7010.

27

Yang, M.; Liu, J. L.; Lee, S.; Zugic, B.; Huang, J.; Allard, L. F.; Flytzani-Stephanopoulos, M. A common single-site Pt(Ⅱ)-O(OH)x- species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 2015, 137, 3470-3473.

28

Ammal, S. C.; Heyden, A. Understanding the nature and activity of supported platinum catalysts for the water-gas shift reaction: From metallic nanoclusters to alkali-stabilized single-atom cations. ACS Catal. 2019, 9, 7721-7740.

29

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295-1301.

30

Jones, J.; Xiong, H.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.

31

Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.

32

Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525- 10530.

33

Kwak, J. H.; Hu, J.; Mei, D.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670-1673.

34

Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53-229.

35

Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Besenbacher, F. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys. Rev. Lett. 2001, 87, 266104.

36

Brookes, I. M.; Muryn, C. A.; Thornton, G. Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 2001, 87, 266103.

37

He, Y. B.; Dulub, O.; Cheng, H. Z.; Selloni, A.; Diebold, U. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 2009, 102, 106105.

38

Cheng, H. Z.; Selloni, A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 2009, 79, 092101.

39

Scheiber, P.; Fidler, M.; Dulub, O.; Schmid, M.; Diebold, U.; Hou, W. Y.; Aschauer, U.; Selloni, A. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 2012, 109, 136103.

40

Jin, C.; Dai, Y.; Wei, W.; Ma, X. C.; Li, M. M.; Huang, B. B. Effects of single metal atom (Pt, Pd, Rh, and Ru) adsorption on the photocatalytic properties of anatase TiO2. Appl. Surf. Sci. 2017, 426, 639-646.

41

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508-517.

42

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.

43

Wang, X. Y.; Zhang, L.; Bu, Y. X.; Sun, W. M. Interplay between invasive single atom Pt and native oxygen vacancy in anatase TiO2(101) surface: A theoretical study. Appl. Surf. Sci. 2021, 540, 148357.

44

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413-7421.

45

Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125.

46

Li, Y. D.; Gao, Y. Interplay between water and TiO2 anatase (101) surface with subsurface oxygen vacancy. Phys. Rev. Lett. 2014, 112, 206101.

47

Cromer, D. T.; Herrington, K. The structures of anatase and rutile. J. Am. Chem. Soc. 1955, 77, 4708-4709.

48

Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250-258.

49

Luo, Z. B.; Wang, Z. J.; Li, J.; Yang, K.; Zhou, G. N-promoted Ru1/TiO2 single-atom catalysts for photocatalytic water splitting for hydrogen production: A density functional theory study. Phys. Chem. Chem. Phys. 2020, 22, 11392-11399.

50

Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 2018, 4, 72.

51

Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A. et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351, aad3000.

52

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

53

Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with Quantum Espresso. J. Phys. : Condens. Matter 2017, 29, 465901.

54

Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 2005, 71, 035105.

55

Deskins, N. A.; Rousseau, R.; Dupuis, M. Distribution of Ti3+ surface sites in reduced TiO2. J. Phys. Chem. C 2011, 115, 7562-7572.

56

Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. T. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498-6506.

57

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.

58

Sun, W. M.; Di Felice, R. Nature of the interaction between natural and size-expanded guanine with gold clusters: A density functional theory study. J. Phys. Chem. C 2012, 116, 24954-24961.

59

Matsunaga, K.; Chang, T. Y.; Ishikawa, R.; Dong, Q.; Toyoura, K.; Nakamura, A.; Ikuhara, Y.; Shibata, N. Adsorption sites of single noble metal atoms on the rutile TiO2(110) surface influenced by different surface oxygen vacancies. J. Phys. : Condens. Matter 2016, 28, 175002.

60

Zhang, Z. R.; Ge, Q. F.; Li, S. C.; Kay, B. D.; White, J. M.; Dohnálek, Z. Imaging intrinsic diffusion of bridge-bonded oxygen vacancies on TiO2(110). Phys. Rev. Lett. 2007, 99, 126105.

61

Helali, Z.; Markovits, A.; Minot, C.; Abderrabba, M. Metal atom adsorption on a defective TiO2-x support. Chem. Phys. Lett. 2014, 594, 23-29.

62

Tauster, S. J. Strong metal-support interactions. Acc. Chem. Res. 1987, 20, 389-394.

63

Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electro­catalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545-552.

64

Han, B. C.; Van der Ven, A.; Ceder, G.; Hwang, B. J. Surface segregation and ordering of alloy surfaces in the presence of adsorbates. Phys. Rev. B 2005, 72, 205409.

65

Noh, S. H.; Kwon, C.; Hwang, J.; Ohsaka, T.; Kim, B. J.; Kim, T. Y.; Yoon, Y. G.; Chen, Z. W.; Seo, M. H.; Han, B. Self-assembled nitrogen- doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications. Nanoscale 2017, 9, 7373-7379.

66

Chen, X.; McDonald, A. R. Functionalization of two-dimensional transition-metal dichalcogenides. Adv. Mater. 2016, 28, 5738-5746.

Nano Research
Pages 669-676
Cite this article:
Wang X, Zhang L, Bu Y, et al. Interplay between invasive single atom Pt and native oxygen vacancy in rutile TiO2(110) surface: A theoretical study. Nano Research, 2022, 15(1): 669-676. https://doi.org/10.1007/s12274-021-3542-5
Topics:

924

Views

15

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 24 March 2021
Revised: 22 April 2021
Accepted: 26 April 2021
Published: 22 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return