AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions

Yan Cui1Xiaoyu Guo1Jian Zhang2,3( )Xing'ao Li2,3( )Xinbao Zhu4Wei Huang3,5
Key Laboratory of Broadband Wireless Communication and Sensor Network Technology Ministry of Education Nanjing University of Posts and TelecommunicationsNanjing 210003 China
New Energy Technology Engineering Lab of Jiangsu Province School of Science Nanjing University of Posts & Telecommunications (NUPT)Nanjing 210023 China
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts & Telecommunications (NUPT)Nanjing 210023 China
College of Chemical Engineering Nanjing Forestry UniversityNanjing 210037 China
Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU), 127 West Youyi RoadXi'an 710072 China
Show Author Information

Graphical Abstract

Abstract

Electronic modulation on the inert basal plane of transition-metal dichalcogenides(TMDs) through vacancy defect excitation, although extremely challenging, is urgent for understanding the factors that impact the hydrogen evolution reaction (HER) catalytic activity. Here, ultrathin WS2 nanosheets with precise quantitative single atomic S-vacancy on the inert basal plane were flexible prepared through hydrogen peroxide etching strategy. The as-synthesized single atomic S-vacancy defect WS2 (SVD-WS2) nanoflake with the activated basal plane exhibited an impressive overpotential of 137 mV at a current density of 10 mA·cm-2 and a Tafel slope of 53.9 mV·dec-1. Furthermore, anchoring on the defect graphene matrix, the assembled two-dimensional (2D) stacking heterojunction exhibits further enhanced HER catalytic activity (an overpotential of 108 mV vs. 10 mA·cm-2 and a Tafel slope of 48.3 mV·dec-1) and stability (~ 10% decline after 9, 000 cycles), which attributed to the electronic structure modulation from the synergetic interactions between SVD-WS2 and defect graphene. Our finding provides a smart defects introduce strategy to trigger high-efficiency hydrogen evolution over WS2 nanosheets and a general 2D heterojunctions fabricated inspiration based on strong interaction interface.

Electronic Supplementary Material

Download File(s)
12274_2021_3545_MOESM1_ESM.pdf (2.8 MB)

References

1

Huang, H. J.; Yan, M. M.; Yang, C. Z.; He, H. Y.; Jiang, Q. G.; Yang, L.; Lu, Z. Y.; Sun, Z. Q.; Xu, X. T.; Bando Y. et al. Graphene nanoarchitectonics: Recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2019, 31, 1903415.

2

Zhang, J.; Cui, R. J.; Gao, C. C.; Bian, L. Y.; Pu, Y.; Zhu, X. B.; Li, X. A.; Huang, W. Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting. Small 2019, 15, 1904688.

3

Chen, W.; Huang, G. B.; Song, H.; Zhang, J. Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. J. Mater. Chem. A 2020, 8, 20963-20969.

4

Lu, W. W.; Zhang, Y.; Zhang, J. J.; Xu, P. Reduction of gas CO2 to CO with high selectivity by Ag nanocube-based membrane cathodes in a photoelectrochemical system. Ind. Eng. Chem. Res. 2020, 59, 5536-5545.

5

Xu, P.; Lu, W. W.; Zhang, J. J.; Zhang, L. Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@Pd core-shell nanocubes. ACS Sustainable Chem. Eng. 2020, 8, 12366-12377.

6

Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides-a vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

7

Cui, Y.; Xue, Y.; Zhang, R.; Zhang, J.; Li, X. A.; Zhu, X. B. Vanadium-cobalt oxyhydroxide shows ultralow overpotential for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 21911-21917.

8

Zhou, Q.; Zhao, G. Q.; Rui, K.; Chen, Y. P.; Xu, X.; Dou, S. X.; Sun, W. P. Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale 2019, 11, 717-724.

9

Li, L.; Qin, Z. D.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D. et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 2019, 13, 6824-6834.

10

Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056-2062.

11

Sun, Y. Q.; Xu, K.; Wei, Z. X.; Li, H. L.; Zhang, T.; Li, X. Y.; Cai, W. P.; Ma, J. M.; Fan, H.; Li, Y. Strong electronic interaction in dual- cation incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1802121.

12

Zhang, F. Y.; Xi, S. B.; Lin, G. M.; Hu, X. L.; Lou, X. W.; Xie, K. Metallic porous iron nitride and tantalum nitride single crystals with enhanced electrocatalysis performance. Adv. Mater. 2019, 31, 1806552.

13

Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

14

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.

15

Dinh, K. N.; Sun, X. L.; Dai, Z. F.; Zheng, Y.; Zheng, P. L.; Yang, J.; Xu, J. W.; Wang, Z. G.; Yan, Q. Y. O2 Plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy 2018, 54, 82-90.

16

Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320-1326.

17

Zhang, Q. R.; Bedford, N. M.; Pan, J.; Lu, X. Y.; Amal, R. A fully reversible water electrolyzer cell made up from FeCoNi (oxy)hydroxide atomic layers. Adv. Energy Mater. 2019, 9, 1901312.

18

Liu, J. L.; Wang, Z. Y.; Li, J.; Cao, L. J.; Lu, Z. G.; Zhu, D. D. Structure engineering of MoS2 via simultaneous oxygen and phosphorus incorporation for improved hydrogen evolution. Small 2020, 16, 1905738.

19

Wang, H. Q.; Xu, Z. F.; Zhang, Z. F.; Hu, S. X.; Ma, M. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Addressable surface engineering for N-doped WS2 nanosheet arrays with abundant active sites and the optimal local electronic structure for enhanced hydrogen evolution reaction. Nanoscale 2020, 12, 22541-22550.

20

Gao, B.; Du, X. Y.; Li, Y. H.; Ding, S. J.; Xiao, C. H.; Song, Z. X. Deep phase transition of MoS2 for excellent hydrogen evolution reaction by a facile C-doping strategy. ACS Appl. Mater. Interfaces 2020, 12, 877-885.

21

Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213-2219.

22

Jain, A.; Sadan, B. M.; Ramasubramaniam, A. Promoting active sites for hydrogen evolution in MoSe2 via transition-metal doping. J. Phys. Chem. C 2020, 124, 12324-12336.

23

Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479-15485.

24

Zhang, X.; Zhou, F.; Zhang, S.; Liang, Y. Y.; Wang, R. H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization. Adv. Sci. 2019, 6, 1900090.

25

Pan, U. N.; Singh, T. I.; Paudel, D. R.; Gudal, C. C.; Kim, N. H.; Lee, J. H. Covalent doping of Ni and P on 1T-enriched MoS2 bifunctional 2D-nanostructures with active basal planes and expanded interlayers boosts electrocatalytic water splitting. J. Mater. Chem. A 2020, 8, 19654-19664.

26

Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527-17536.

27

Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838-1846.

28

Gao, Z. W.; Liu, M. J.; Zheng, W. R.; Zhang, X. D.; Lee, L. Y. S. Surface engineering of MoS2 via laser-induced exfoliation in protic solvents. Small 2019, 15, 1903791.

29

Geng, S.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W.; Li, H. B. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Res. 2020, 13, 121-126.

30

Wu, Z. X.; Zhao, Y.; Jin, W.; Jia, B. H.; Wang, J.; Ma, T. Y. Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv. Funct. Mater. 2021, 31, 2009070.

31

Ying, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965-7972.

32

Yang, J.; Wang, Y.; Lagos, M. J.; Manichev, V.; Fullon, R.; Song, X. J.; Voiry, D.; Chakraborty, S.; Zhang, W. J.; Batson, P. E. et al. Single atomic vacancy catalysis. ACS Nano 2019, 13, 9958-9964.

33

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.

34

Yi, J.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532-9538.

35

Ouyang, Y. X.; Li, Q.; Shi, L.; Ling, C. Y.; Wang, J. L. Molybdenum sulfide clusters immobilized on defective graphene: A stable catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 2289-2294.

36

Wu, S. Y.; Chen, H. T. Structure, bonding, and catalytic properties of defect graphene coordinated Pd-Ni nanoparticles. J. Phys. Chem. C 2017, 121, 14668-14677.

37

Wang, H.; Ouyang, L. Y.; Zou, G. F.; Sun, C.; Hu, J.; Xiao, X.; Gao, L. J. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. ACS Catal. 2018, 8, 9529-9536.

38

Sun, Y. F.; Darling, A. J.; Li, Y. W.; Fujisawa, K.; Holder, C. F.; Liu, H.; Janik, M. J.; Terrones, M.; Schaak, R. E. Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS2. Chem. Sci. 2019, 10, 10310-10317.

39

Zhang, J.; Wang, Q.; Wang, L. H.; Li, X. A.; Huang, W. Layer- controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution. Nanoscale 2015, 7, 10391-10397.

40

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298-4308.

41

Jiang, J. F.; Zhang, Q. H.; Wang, A. Z.; Zhang, Y.; Meng, F. Q.; Zhang, C. C.; Feng, X. J.; Feng, Y. P.; Gu, L.; Liu, H. et al. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 2019, 15, 1901791.

42

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.

43

Thripuranthaka, M.; Dattatray, J. L. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158- 1163.

44

Yang, X. D.; Zheng, Y. P.; Yang, J.; Shi, W.; Zhong, J. H.; Zhang, C. K.; Zhang, X.; Hong, Y. H.; Peng, X. X.; Zhou, Z. Y. et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal. 2017, 7, 139-145.

45

Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121-14127.

46

Ling, Y.; Yang, Z. H.; Zhang, Q.; Zhang, Y. F.; Cai, W. W.; Cheng, H. S. A self-template synthesis of defect-rich WS2 as a highly efficient electrocatalyst for the hydrogen evolution reaction. Chem. Commun. 2018, 54, 2631-2634.

47

Pandey, A.; Mukherjee, A.; Chakrabarty, S.; Chanda, D.; Basu, S. Interface engineering of an RGO/MoS2/Pd 2D heterostructure for electrocatalytic overall water splitting in alkaline medium. ACS Appl. Mater. Interfaces 2019, 11, 42094-42103.

48

Chakrabarty, S.; Mukherjee, A.; Basu, S. RGO-MoS2 supported NiCo2O4 catalyst toward solar water splitting and dye degradation. ACS Sustainable Chem. Eng. 2018, 6, 5238-5247.

49

Li, H. L.; Yu, K.; Fu, H.; Guo, B. J.; Lei, X.; Zhu, Z. Q. MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J. Phys. Chem. C 2015, 119, 7959-7968.

50

Li, J.; Liu, X. M.; Zhang, J. Smart assembly of sulfide heterojunction photocatalysts with well-defined interfaces for direct Z-scheme water splitting under visible light. ChemSusChem 2020, 13, 2996- 3004.

51

Seo, B.; Jung, G. Y.; Kim, J. H.; Shin, T. J.; Jeong, H. Y.; Kwak, S.; Joo, S. H. Preferential horizontal growth of tungsten sulfide on carbon and insight into active sulfur sites for the hydrogen evolution reaction. Nanoscale 2018, 10, 3838-3848.

52

Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784-2791.

53

Song, Y.; Bai, S.; Zhu, L.; Zhao, M. Y.; Han, D. W.; Jiang, S. H.; Zhou, Y. N. Tuning pseudocapacitance via C-S bonding in WS2 nanorods anchored on N, S codoped graphene for high-power lithium batteries. ACS Appl. Mater. Interfaces 2018, 10, 13606-13613.

54

Chen, P. Z.; Zhou, T. P.; Wang, S. B.; Zhang, N.; Tong, Y.; Ju, H. X.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 15471-15475.

55

Zhuang, M. H.; Ou, X. W.; Dou, Y. B.; Zhang, L. L.; Zhang, Q. C.; Wu, R. Z.; Ding, Y.; Shao, M. H.; Luo, Z. T. Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation. Nano Lett. 2016, 16, 4691-4698.

56

Xue, N.; Lin, Z.; Li, P. K.; Diao, P.; Zhang, Q. F. Sulfur-doped CoSe2 porous nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 28288- 28297.

57

Cao, Y.; Xiahou, Y.; Xiang, L. X.; Zhang, X.; Li, H.; Wu, C. S.; Xia, H. B. Fe(Ⅱ)-assisted one-pot synthesis of ultra-small core-shell Au-Pt nanoparticles as superior catalysts towards the HER and ORR. Nanoscale 2020, 12, 20456-30466.

58

Piontek, S.; Andronescu, C.; Zaichenko, A.; Konkena, B.; Puring, K. J.; Marler, B.; Antoni, H.; Sinev, I.; Muhler, M.; Mollenhauer, D. et al. Influence of the Fe: Ni ratio and reaction temperature on the efficiency of (FexNi1-x)9S8 electrocatalysts applied in the hydrogen evolution reaction. ACS Catal. 2018, 8, 987-996.

59

Liu, H. H.; Chen, D. L.; Wang, Z. Q.; Jing, H. J.; Zhang, R. Microwave- assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B Enveron. 2017, 203, 300-313.

60

Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen- doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.

61

Chen, X. X.; Zhang, J.; Huang, C. P.; Wu, Q.; Wu, J.; Xia, L. G.; Xu, Q. J.; Yao, W. F. Modification of black phosphorus nanosheets with a Ni-containing carbon layer as efficient and stable hydrogen production electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 54619-54626.

62

Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179-6187.

63

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni M.; Dabo, I. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

64

Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337-350.

65

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855.

Nano Research
Pages 677-684
Cite this article:
Cui Y, Guo X, Zhang J, et al. Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Research, 2022, 15(1): 677-684. https://doi.org/10.1007/s12274-021-3545-2
Topics:

806

Views

42

Crossref

43

Web of Science

42

Scopus

1

CSCD

Altmetrics

Received: 27 April 2021
Revised: 27 April 2021
Accepted: 28 April 2021
Published: 29 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return