AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Co-delivery of TRAIL and paclitaxel by fibronectin-targeting liposomal nanodisk for effective lung melanoma metastasis treatment

Shiqi HuangLang DengHanming ZhangLuyao WangYicong ZhangQing LinTao GongXun SunZhirong Zhang( )Ling Zhang( )
Key Laboratory of Drug Targeting and Drug Delivery Systems Ministry of Education West China School of Pharmacy College of Polymer Science and Engineering Sichuan UniversityChengdu 610041 China
Show Author Information

Graphical Abstract

Abstract

Melanoma is a highly aggressive cancer which often forms metastatic tumors in the lung, leading to sharply reduced patients' survival rate. Effectively treating these tumors thus could improve late stage melanoma with lung metastasis. In this study, we fabricated a Cys-Arg-Glu-Lys-Ala with N-methylated Glu (CR(NMe)EKA) decorated disk shaped nano vehicle to co-deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and paclitaxel (PTX) to lung melanoma tumor sites (TRAIL-[ND- PTX]CR(NMe)EKA). These nanodisks displayed better tumor-targeting and penetration capability than spherical nanoparticles, while the fibronectin-targeting CR(NMe)EKA motif also increased the tumor accumulation of loaded drugs. The combined usage of TRAIL and PTX both killed tumor cells and reduced local nutrition supply, leading to stronger overall anti-tumor effect. This TRAIL-[ND-PTX]CR(NMe)EKA system performed remarkably better than free paclitaxel and also significantly elongated survival rate of melanoma lung metastasis bearing mice, without displaying significant toxicity. Hence, this designing strategy and the fabricated nanoplatform possess potential for further development.

Electronic Supplementary Material

Download File(s)
12274_2021_3553_MOESM1_ESM.pdf (2.4 MB)

References

1

McArthur, G. A.; Chapman, P. B.; Robert, C.; Larkin, J.; Haanen, J. B.; Dummer, R.; Ribas, A.; Hogg, D.; Hamid, O.; Ascierto, P. A. et al. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): Extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014, 15, 323-332.

2

Long, Y.; Lu, Z. Z.; Mei, L.; Li, M.; Ren, K. B.; Wang, X. H.; Tang, J. J.; Zhang, Z. R.; He, Q. Enhanced melanoma-targeted therapy by "fru-blocked" phenyboronic acid-modified multiphase antimetastatic micellar nanoparticles. Adv. Sci. 2018, 5, 1800229.

3

Mohme, M.; Riethdorf, S.; Pantel, K. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat. Rev. Clin. Oncol. 2017, 14, 155-167.

4

Peinado, H.; Zhang, H. Y.; Matei, I. R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R. N.; Bromberg, J. F.; Kang, Y. B. et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer 2017, 17, 302-317.

5

Huang, R. L.; Teo, Z.; Chong, H. C.; Zhu, P. C.; Tan, M. J.; Tan, C. K.; Lam, C. R. I.; Sng, M. K.; Leong, D. T. W.; Tan, S. M. et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood 2011, 118, 3990-4002.

6

Tichet, M.; Prod'Homme, V.; Fenouille, N.; Ambrosetti, D.; Mallavialle, A.; Cerezo, M.; Ohanna, M.; Audebert, S.; Rocchi, S.; Giacchero, D. et al. Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat. Commun. 2015, 6, 6993.

7

Smith, H. A.; Kang, Y. B. Determinants of organotropic metastasis. Ann. Rev. Cancer Biol. 2017, 1, 403-423.

8

Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA A Cancer J. Clin. 2011, 61, 69-90.

9

Wang, L. Y.; Zhou, B. J.; Huang, S. Q.; Qu, M. K.; Lin, Q.; Gong, T.; Huang, Y.; Sun, X.; He, Q.; Zhang, Z. R. et al. Novel fibronectin- targeted nanodisk drug delivery system displayed superior efficacy against prostate cancer compared with nanospheres. Nano Res. 2019, 12, 2451-2459.

10

Füredi, A.; Szebényi, K.; Tóth, S.; Cserepes, M.; Hámori, L.; Nagy, V.; Karai, E.; Vajdovich, P.; Imre, T.; Szabó, P. et al. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer. J. Control. Release 2017, 261, 287-296.

11

Duesberg, P.; Li, R. H.; Sachs, R.; Fabarius, A.; Upender, M. B.; Hehlmann, R. Cancer drug resistance: The central role of the karyotype. Drug Res. Updates 2007, 10, 51-58.

12

Giantonio, B. J.; Catalano, P. J.; Meropol, N. J.; O'Dwyer, P. J.; Mitchell, E. P.; Alberts, S. R.; Schwartz, M. A.; Benson III, A. R. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: Results from the eastern cooperative oncology group study E3200. J. Clin. Oncol. 2007, 25, 1539-1544.

13

Gradishar, W. J.; Meza, L. A.; Amin, B.; Samid, D.; Hill, T.; Chen, Y. M.; Lower, E. E.; Marcom, P. K. Capecitabine plus paclitaxel as front-line combination therapy for metastatic breast cancer: A multicenter phase II study. J. Clin. Oncol. 2004, 22, 2321-2327.

14

Jiang, H. H.; Kim, T. H.; Lee, S.; Chen, X. Y.; Youn, Y. S.; Lee, K. C. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy. Biomaterials 2011, 32, 8529- 8537.

15

Pitti, R. M.; Marsters, S. A.; Ruppert, S.; Donahue, C. J.; Moore, A.; Ashkenazi, A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 1996, 271, 12687-12690.

16

Liao, P. C.; Lieu, C. H. Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells. Life Sci. 2005, 76, 1623-1639.

17

Seol, J. Y.; Park, K. H.; Hwang, C. I.; Park, W. Y.; Yoo, C. G.; Kim, Y. W.; Han, S. K.; Shim, Y. S.; Lee, C. T. Adenovirus-TRAIL can overcome TRAIL resistance and induce a bystander effect. Cancer Gene Ther. 2003, 10, 540-548.

18

Shankar, S.; Srivastava, R. K. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: Mechanisms and clinical implications. Drug Res. Updates 2004, 7, 139-156.

19

Huang, S. Q.; Zhang, Y. C.; Wang, L. Y.; Liu, W.; Xiao, L. Y.; Lin, Q.; Gong, T.; Sun, X.; He, Q.; Zhang, Z. R. et al. Improved melanoma suppression with target-delivered TRAIL and Paclitaxel by a multifunctional nanocarrier. J. Control. Release 2020, 325, 10-24.

20

Srivastava, R. K. TRAIL/Apo-2L: Mechanisms and clinical applications in cancer. Neoplasia 2001, 3, 535-546.

21

LeBlanc, H. N.; Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003, 10, 66-75.

22

Hu, Q. Y.; Sun, W. J.; Lu, Y.; Bomba, H. N.; Ye, Y. Q.; Jiang, T. Y.; Isaacson, A. J.; Gu, Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Lett. 2016, 16, 1118-1126.

23

Griffith, T. S.; Lynch, D. H. TRAIL: A molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 1998, 10, 559-563.

24

Ashkenazi, A.; Dixit, V. M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 1999, 11, 255-260.

25

Jain, R. K.; Di Tomaso, E.; Duda, D. G.; Loeffler, J. S.; Sorensen, A. G.; Batchelor, T. T. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 2007, 8, 610-622.

26

Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975-999.

27

Allen, T. M. Liposomes. Drugs 1997, 54, 8-14.

28

Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145-160.

29

Wayne, E. C.; Chandrasekaran, S.; Mitchell, M. J.; Chan, M. F.; Lee, R. E.; Schaffer, C. B.; King, M. R. TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer. J. Controlled Release 2016, 223, 215-223.

30

Chauhan, V. P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M. G.; Jain, R. K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. , Int. Ed. 2011, 50, 11417-11420.

31

Park, J. H.; von Maltzahn, G.; Zhang, L. L.; Derfus, A. M.; Simberg, D.; Harris, T. J.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 2009, 5, 694-700.

32

Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47-52.

33

Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249-255.

34

Wang, H.; Wang, S. L.; Wang, R. F.; Wang, X. Y.; Jiang, K.; Xie, C.; Zhan, C. Y.; Wang, H.; Lu, W. Y. Co-delivery of paclitaxel and melittin by glycopeptide-modified lipodisks for synergistic anti-glioma therapy. Nanoscale 2019, 11, 13069-13077.

35

Gao, J.; Xie, C.; Zhang, M. F.; Wei, X. L.; Yan, Z. Q.; Ren, Y. C.; Ying, M.; Lu, W. Y. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery. Nanoscale 2016, 8, 7209-7216.

36

Zhang, W. P.; Sun, J.; Liu, Y.; Tao, M. Y.; Ai, X. Y.; Su, X. N.; Cai, C. F.; Tang, Y. L.; Feng, Z.; Yan, X. D. et al. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Mol. Pharmaceutics 2014, 11, 3279-3290.

37

Yeh, C. Y.; Hsiao, J. K.; Wang, Y. P.; Lan, C. H.; Wu, H. C. Peptide- conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 2016, 99, 1-15.

38

Wang, L. Y.; Qu, M. K.; Huang, S. Q.; Fu, Y.; Yang, L. Q.; He, S. S.; Li, L.; Zhang, Z. R.; Lin, Q.; Zhang, L. A novel α-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale 2018, 10, 13673-13683.

39

Bae, Y. H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release 2011, 153, 198-205.

40

Wong, K. M.; Horton, K. J.; Coveler, A. L.; Hingorani, S. R.; Harris, W. P. Targeting the tumor stroma: The biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr. Oncol. Rep. 2017, 19, 47.

41

Barbazán, J.; Alonso-Alconada, L.; Elkhatib, N.; Geraldo, S.; Gurchenkov, V.; Glentis, A.; van Niel, G.; Palmulli, R.; Fernández, B.; Viaño, P. et al. Liver metastasis is facilitated by the adherence of circulating tumor cells to vascular fibronectin deposits. Cancer Res. 2017, 77, 3431-3441.

42

Zhou, Z. X.; Qutaish, M.; Han, Z.; Schur, R. M.; Liu, Y. Q.; Wilson, D. L.; Lu, Z. R. MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat. Commun. 2015, 6, 7984.

43

Gocheva, V.; Naba, A.; Bhutkar, A.; Guardia, T.; Miller, K. M.; Li, C. M. C.; Dayton, T. L.; Sanchez-Rivera, F. J.; Kim-Kiselak, C.; Jailkhani, N. et al. Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc. Natl. Acad. Sci. USA 2017, 114, E5625-E5634.

44

Zhao, J. J.; Zhang, B.; Shen, S.; Chen, J.; Zhang, Q. Z.; Jiang, X. G.; Pang, Z. Q. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J. Colloid Interface Sci. 2015, 450, 396-403.

45

Simberg, D.; Duza, T.; Park, J. H.; Essler, M.; Pilch, J.; Zhang, L. L.; Derfus, A. M.; Yang, M.; Hoffman, R. M.; Bhatia, S. et al. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 932-936.

46

Jiang, K. J.; Song, X.; Yang, L. Q.; Li, L.; Wan, Z. Y.; Sun, X.; Gong, T.; Lin, Q.; Zhang, Z. R. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J. Control. Release 2017, 271, 21-30.

47

Zhou, Z. X.; Wu, X. M.; Kresak, A.; Griswold, M.; Lu, Z. R. Peptide targeted tripod macrocyclic Gd(Ⅲ) chelates for cancer molecular MRI. Biomaterials 2013, 34, 7683-7693.

48

Song, X.; Wan, Z. Y.; Chen, T. J.; Fu, Y.; Jiang, K. J.; Yi, X. L.; Ke, H.; Dong, J. X.; Yang, L. Q.; Li, L. et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 2016, 108, 44-56.

49

Wang, H.; Wang, X. Y.; Xie, C.; Zhang, M. F.; Ruan, H. T.; Wang, S. L.; Jiang, K.; Wang, F.; Zhan, C. Y.; Lu, W. Y. et al. Nanodisk-based glioma-targeted drug delivery enabled by a stable glycopeptide. J. Control. Release 2018, 284, 26-38.

50

Gao, Y. J.; Zhou, Y. X.; Zhao, L.; Zhang, C.; Li, Y. S.; Li, J. W.; Li, X. R.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 2015, 23, 127-135.

51

Jiang, T. Y.; Mo, R.; Bellotti, A.; Zhou, J. P.; Gu, Z. Gel-liposome- mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 2014, 24, 2295-2304.

52

Loi, M.; Becherini, P.; Emionite, L.; Giacomini, A.; Cossu, I.; Destefanis, E.; Brignole, C.; Di Paolo, D.; Piaggio, F.; Perri, P. et al. sTRAIL coupled to liposomes improves its pharmacokinetic profile and overcomes neuroblastoma tumour resistance in combination with Bortezomib. J. Control. Release 2014, 192, 157-166.

53

Zhou, F. Y.; Feng, B.; Yu, H. J.; Wang, D. G.; Wang, T. T.; Ma, Y. T.; Wang, S. L.; Li, Y. P. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 Blockade. Adv. Mater. 2019, 31, 1805888.

54

Li, S. Y.; Cheng, H.; Qiu, W. X.; Zhang, L.; Wan, S. S.; Zeng, J. Y.; Zhang, X. Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 2017, 142, 149-161.

55

Felber, A. E.; Dufresne, M. H.; Leroux, J. C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 2012, 64, 979-992.

56

Sharma, G.; Modgil, A.; Layek, B.; Arora, K.; Sun, C. W.; Law, B.; Singh, J. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection. J. Control. Release 2013, 167, 1-10.

57

Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086-1094.

58

Shi, K. R.; Li, J. P.; Cao, Z. L.; Yang, P.; Qiu, Y.; Yang, B.; Wang, Y.; Long, Y.; Liu, Y. Y.; Zhang, Q. Y. A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin αvβ3 for the treatment of melanoma. J. Control. Release 2015, 217, 138-150.

59

Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release 2012, 161, 175-187.

60

Maruyama, K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 2011, 63, 161-169.

61

Pluen, A.; Netti, P. A.; Jain, R. K.; Berk, D. A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 1999, 77, 542-552.

62

Deen, W. M.; Bohrer, M. P.; Epstein, N. B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 1981, 27, 952-959.

63

Joensuu, K.; Leidenius, M.; Kero, M.; Andersson, L. C.; Horwitz, K. B.; Heikkilä, P. eR, pR, HeR2, Ki-67 and cK5 in early and Late Relapsing Breast cancer—Reduced cK5 expression in Metastases. Breast Cancer Basic Clini. Res. 2013, 7, 23-34.

64

Urruticoechea, A.; Smith, I. E.; Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 2005, 23, 7212-7220.

65

Agemy, L.; Sugahara, K. N.; Kotamraju, V. R.; Gujraty, K.; Girard, O. M.; Kono, Y.; Mattrey, R. F.; Park, J. H.; Sailor, M. J.; Jimenez, A. I. et al. Nanoparticle-induced vascular blockade in human prostate cancer. Blood 2010, 116, 2847-2856.

66

Al-Jamal, K. T.; Al-Jamal, W. T.; Wang, J. T. W.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 2013, 7, 1905-1917.

67

Xu, Z. H.; Wang, Y. H.; Zhang, L.; Huang, L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 2014, 8, 3636-3645.

68

Gaggioli, C.; Sahai, E. Melanoma invasion-current knowledge and future directions. Pigment Cell Res. 2007, 20, 161-172.

Nano Research
Pages 728-737
Cite this article:
Huang S, Deng L, Zhang H, et al. Co-delivery of TRAIL and paclitaxel by fibronectin-targeting liposomal nanodisk for effective lung melanoma metastasis treatment. Nano Research, 2022, 15(1): 728-737. https://doi.org/10.1007/s12274-021-3553-2
Topics:

953

Views

9

Crossref

10

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 04 March 2021
Revised: 26 April 2021
Accepted: 30 April 2021
Published: 29 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return