Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Broadband optoelectronic devices intrigue enormous interests on account of their promising potential in optical communications, sensors and environmental monitoring. PbSe nanocrystals are promising candidates for the construction of next-generation photodetectors due to their fascinating intrinsic properties and solution-processed compatibility with varied substrates. Here, we report the fabrication of a broadband photodetector on the basis of high-quality solution-processed PbSe nanorods in rock-salt phase grown along unconventionally anisotropic growth direction of < 112 > zone axis. The rock-salt PbSe nanorods are synthesized in solution phase over the catalysis of Ag2Se with relatively high-temperature body-centered cubic phase via a solution-solid-solid growth regime using oleylamine and oleic acid as solvents and stabilizer surfactants, from which the PbSe nanorods with the unconventionally anisotropic growth direction are controllably grown in size and shape in the synthetic procedure typically with about 17 nm in diameter and 58 nm in length on average. Meanwhile, the PbSe nanorods-based photodetector exhibits a broadband response from 405 to 1, 064 nm with a high responsivity of 0.78 A·W−1 and a fast response time of 17.5 µs. The response time is much faster in comparison with most of the PbSe-based photodetectors with response time in millisecond level.
Kang, I.; Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 1997, 14, 1632–1646.
Du, H.; Chen, C.; Krishnan, R.; Krauss, T. D.; Harbold, J. M.; Wise, F. W.; Thomas, M. G.; Silcox, J. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2002, 2, 1321–1324.
Martinez, G.; Schluter, M.; Cohen, M. L. Electronic structure of PbSe and PbTe. I. Band structures, densities of states, and effective masses. Phys. Rev. B 1975, 11, 651–659.
Pietryga, J. M.; Schaller, R. D.; Werder, D.; Stewart, M. H.; Klimov, V. I.; Hollingsworth, J. A. Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 2004, 126, 11752–11753.
Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2008, 2, 833–840.
Ahmad, W.; He, J. G.; Liu, Z. T.; Xu, K.; Chen, Z.; Yang, X. K.; Li, D. B.; Xia, Y.; Zhang, J. B.; Chen, C. Lead selenide (PbSe) colloidal quantum dot solar cells with > 10% efficiency. Adv. Mater. 2019, 31, 1900593.
Wang, H.; Gibbs, Z. M.; Takagiwa, Y.; Snyder, G. J. Tuning bands of PbSe for better thermoelectric efficiency. Energy Environ. Sci. 2014, 7, 804–811.
Androulakis, J.; Todorov, I.; He, J. Y.; Chung, D. Y.; Dravid, V.; Kanatzidis, M. Thermoelectrics from abundant chemical elements: High-performance nanostructured PbSe-PbS. J. Am. Chem. Soc. 2011, 133, 10920–10927.
Xu, H. Z.; Zhao, F.; Majumdar, A.; Jayasinghe, L.; Shi, Z. High power mid-infrared optically pumped PbSe/PbSrSe multiple-quantum-well vertical-cavity surface-emitting laser operation at 325K. Electron. Lett. 2003, 39, 659–661.
Jiang, Z. Y.; You, G. J; Wang, L.; Liu, J.; Hu, W. J.; Zhang, Y.; Xu, J. Solution-processed high-performance colloidal quantum dot tandem photodetectors on flexible substrates. J. Appl. Phys. 2014, 116, 084303.
Sarasqueta, G.; Choudhury, K. R.; So, F. Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal infrared photodetectors. Chem. Mater. 2010, 22, 3496–3501.
Li, C. G.; Bai, T. Y.; Li, F. F.; Wang, L.; Wu, X. F.; Yuan, L.; Shi, Z.; Feng, S. H. Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices. CrystEngComm 2013, 15, 597–603.
Jiang, Z. Y.; Hu, W. J.; Mo, C.; Liu, Y.; Zhang, W. J.; You, G. J.; Wang, L.; Atalla, M. R. M.; Zhang, Y.; Liu, J. et al. Ultra-sensitive tandem colloidal quantum-dot photodetectors. Nanoscale 2015, 7, 16195–16199.
Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 µm. ACS Nano 2019, 13, 9028–9037.
Ren, Y. X.; Dai, T. J.; He, B.; Liu, X. Z. Improvement on performances of graphene-PbSe Schottky photodetector via oxygen-sensitization of PbSe. Mater. Lett. 2019, 236, 194–196.
Zhu, T.; Yang, Y. R.; Zheng, L. Y.; Liu, L.; Becker, M. L.; Gong, X. Solution-processed flexible broadband photodetectors with solution-processed transparent polymeric electrode. Adv. Funct. Mater. 2020, 30, 1909487.
Tang, H. D.; Zhong, J. L.; Chen, W.; Shi, K. M.; Mei, G. D.; Zhang, Y. N.; Wen, Z. L.; Müller-Buschbaum, P.; Wu, D.; Wang, K. et al. Lead sulfide quantum dot photodetector with enhanced responsivity through a two-step ligand-exchange method. ACS Appl. Nano Mater. 2019, 2, 6135–6143.
Mishra, N.; Mukherjee, B.; Xing, G.; Chakrabortty, S.; Guchhait, A.; Lim, J. Y. Cation exchange synthesis of uniform PbSe/PbS core/shell tetra-pods and their use as near-infrared photodetectors. Nanoscale 2016, 8, 14203–14212.
Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.
Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.
Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.
Kim, D. K.; Lai, Y. M.; Vemulkar, T. R.; Kagan, C. R. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors. ACS Nano 2011, 5, 10074–10083.
Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.
Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.
Choi, D.; Jang, Y.; Lee, J.; Jeong, G. H.; Whang, D.; Hwang, S. W.; Cho, K. S.; Kim, S. W. Diameter-controlled and surface-modified Sb2Se3 nanowires and their photodetector performance. Sci. Rep. 2014, 4, 6714.
Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.
Davis, N. J. L. K.; Böehm, M. L.; Tabachnyk, M.; Wisnivesky-Rocca-Rivarola, F.; Jellicoe, T. C.; Ducati, C.; Ehrler, B.; Greenham, N. C. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 2015, 6, 8259.
Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.
Al-mawlawi, D.; Liu, C. Z.; Moskovits, M. Nanowires formed in anodic oxide nanotemplates. J. Mater. Res. 1994, 9, 1014–1018.
Han, W. Q.; Fan, S. S.; Li, Q. Q.; Hu, Y. D. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 1997, 277, 1287–1289.
Li, Y. D.; Liao, H. W.; Ding, Y.; Qian, Y. T.; Yang, L.; Zhou, G. E. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 1998 10, 2301–2303.
Yu, S. H.; Wu, Y. S.; Yang, J.; Han, Z. H.; Xie, Y.; Qian, Y. T.; Liu, X. M. A novel solventothermal synthetic route to nanocrystalline CdE (E = S, Se, Te) and morphological control. Chem. Mater. 1998, 10, 2309–2312.
Peng, X. G; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.
Yu, S. H.; Yoshimura, M. Shape and phase control of ZnS nanocrystals: Template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS-(NH2CH2CH2NH2)0.5. Adv. Mater. 2002, 14, 296–300.
Deng, Z. X.; Wang, C.; Sun, X. M.; Li, Y. D. Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg. Chem. 2002, 41, 869–873.
Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H.; Qian, Y. T. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligandn-butylamine as a shape controller. Angew. Chem., Int. Ed. 2002, 41, 4697–4700.
Yang, J.; Liu, Y. C.; Lin, H. M.; Chen, C. C. A chain-structure nanotube: Growth and characterization of single-crystal Sb2S3 nanotubes via a chemical vapor transport reaction. Adv. Mater. 2004, 16, 713–716.
Zhan, J. H.; Yang, X. G.; Wang, D. W.; Li, S. D.; Xie, Y.; Xia, Y.; Qian, Y. Polymer-controlled growth of CdS nanowires. Adv. Mater. 2000, 12, 1348–1351.
Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.
Yang, Q; Tang, K. B.; Wang, C. R.; Qian, Y. T; Zhang, S. Y. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires. J. Phys. Chem. B 2002, 106, 9227–9230.
Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.
Zhou, J.; Chen, G. H.; Nie, B.; Zuo, J.; Song, J.; Luo, L. B.; Yang, Q. Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire. CrystEngComm 2013, 15, 6863–6869.
Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.
Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.
Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.
Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473.
Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.
Wang, D. W.; Dai, H. J. Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angew. Chem., Int. Ed. 2002, 41, 4783–4786.
Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors: An analogy to vapor-liquid-solid growth. Science 1995, 270, 1791–1794.
Xie, Y.; Yan, P.; Lu, J.; Wang, W. Z.; Qian, Y. T. A safe low temperature route to InAs nanofibers. Chem. Mater. 1999, 11, 2619–2622.
Qian, Y. Y.; Yang, Q. Straight indium antimonide nanowires with twinning superlattices via a solution route. Nano Lett. 2017, 17, 7183–7190.
Wang, J. L.; Chen, K. M.; Gong, M.; Xu, B.; Yang, Q. Solution-solid-solid mechanism: Superionic conductors catalyze nanowire growth. Nano Lett. 2013, 13, 3996–4000.
O'Sullivan, C.; Gunning, R. D.; Sanyal, A.; Barrett, C. A.; Geaney, H.; Laffir, F. R.; Ahmed, S.; Ryan, K. M. Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J. Am. Chem. Soc. 2009, 131, 12250–12257.
Zhu, G. X.; Xu, Z. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 2011, 133, 148–157.
Zhang, L.; Yang, Q. Kinetic growth of ultralong metastable zincblende MnSe nanowires catalyzed by a fast ionic conductor via a solution-solid-solid mechanism. Nano Lett. 2016, 16, 4008–4013.
Zhang, L.; You, S.; Zuo, M.; Yang, Q. Solution synthesis of nonequilibrium zincblende MnS nanowires. Inorg. Chem. 2017, 56, 7679–7686.
Chen, G. H.; Zhou, J.; Zuo, J.; Yang, Q. Organometallically anisotropic growth of ultralong Sb2Se3 nanowires with highly enhanced photothermal response. ACS Appl. Mater. Interfaces 2016, 8, 2819–2825.
Yong, K. T.; Sahoo, Y.; Choudhury, K. R.; Swihart, M. T.; Minter, J. R.; Prasad, P. N. Shape control of PbSe nanocrystals using noble metal seed particles. Nano Lett. 2006, 6, 709–714.
Kim, M. S.; Sung, Y. M. Enhanced formation of PbSe nanorods via combined solution-liquid-solid growth and oriented attachment. CrystEngComm 2012, 14, 1948–1953.
Koh, W. K.; Yoon, Y.; Murray, C. B. Investigating the phosphine chemistry of Se precursors for the synthesis of PbSe nanorods. Chem. Mater. 2011, 23, 1825–1829.
Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838–1846.
Hoshino, S. Structure and dynamics of solid state ionics. Solid State Ionics 1991, 48, 179–201.
Okabe, T.; Ura, K. High-resolution electron-microscopic studies of the polymorphs in Ag2±δSe films. J. Appl. Cryst. 1994, 27, 140–145.
Ferhat, M.; Nagao, J. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 2000, 88, 813–816.
Boolchand, P.; Bresser, W. J. Mobile silver ions and glass formation in solid electrolytes. Nature 2001, 410, 1070–1073.
Shao, G. R.; Chen, G. H.; Yang, W. L.; Ding, T.; Zuo, J.; Yang, Q. Organometallic-route synthesis, controllable growth, mechanism investigation, and surface feature of PbSe nanostructures with tunable shapes. Langmuir 2014, 30, 2863–2872.
Shao, G. R.; Chen, G. H.; Zuo, J.; Gong, M.; Yang, Q. Organometallic synthesis, structure determination, shape evolution, and formation mechanism of hexapod-like ternary PbSexS1−x nanostructures with tunable compositions. Langmuir 2014, 30, 7811–7822.
Ge, J. P.; Xu, S.; Liu, L. P.; Li, Y. D. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chem. —Eur. J. 2006, 12, 3672–3677.
Zhao, W. B.; Zhu, J. J.; Chen, H. Y. Photochemical preparation of rectangular PbSe and CdSe nanoparticles. J. Cryst. Growth 2003, 252, 587–592.
Bhat, T. S.; Vanalakar, S. A.; Devan, R. S.; Mali, S. S.; Pawar, S. A.; Ma, Y. R.; Hong, C. K.; Kim, J. H.; Patil, P. S. Compact nanoarchitectures of lead selenide via successive ionic layer adsorption and reaction towards optoelectronic devices. J Mater. Sci. Mater. Electron. 2016, 27, 4996–5005.
Kucur, E.; Riegler, J.; Urban, G. A.; Nann, T. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J. Chem. Phys. 2003, 119, 2333–2337.
Li, Y. C.; Zhong, H. Z.; Li, R.; Zhou, Y.; Yang, C. H.; Li, Y. F. High-yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1−x nanocrystals. Adv. Funct. Mater. 2006, 16, 1705–1716.
Jiang, F.; Li, Y. C.; Ye, M. F.; Fan, L. Z.; Ding, Y. Q.; Li, Y. F. Ligand-tuned shape control, oriented assembly, and electrochemical characterization of colloidal ZnTe nanocrystals. Chem. Mater. 2010, 22, 4632–4641.
Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320, 1308.
Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J. B.; Wei, S. H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226–7231.
Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.
Chen, G. H.; Yu, Y. Q.; Zheng, K.; Ding, T.; Wang, W. L.; Jiang, Y.; Yang, Q. Fabrication of ultrathin Bi2S3 nanosheets for highperformance, flexible, visible-NIR photodetectors. Small 2015, 11, 2848–2855.
Yu, Y. Q.; Li, Z.; Lu, Z. J.; Geng, X. S.; Lu, Y. C.; Xu, G. B.; Wang, L.; Jie, J. S. Graphene/MoS2/Si nanowires Schottky-NP bipolar van der Waals heterojunction for ultrafast photodetectors. IEEE Electron Device Lett. 2018, 39, 1688–1691.
Li, Y.; Xu, C. Y.; Wang, J. Y.; Zhen, L. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures. Sci. Rep. 2014, 4, 7186.
Geng, X. S.; Yu, Y. Q.; Zhou, X. L.; Wang, C. D.; Xu, K. W.; Zhang, Y.; Wu, C. Y. Wang, L.; Jiang, Y.; Yang, Q. Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 2016, 9, 2641–2651.