Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing cost-effective, efficient and bifunctional electrocatalysts is vital for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) application. The catalytic activity of electrocatalysts could be optimized by reasonable electronic structure regulation and increasing active sites. Herein, we report the design and fabrication of Mo-doped nickel sulfide/hydroxide heterostructures (Mo-NiS/Ni(OH)2) as a multisite water splitting catalyst via straightforward solvothermal and in-situ growth strategy. Based on foreign metal doping and interface interaction, the electronic conductivity of heterostructures is improved and the charge transfer kinetics across the interface is promoted, which are demonstrated by the theoretical calculations. Mo-NiS/Ni(OH)2 electrocatalyst is endowed with high electrocatalytic performance for water splitting and remarkable durability in alkaline electrolyte. It exhibits the low overpotential of 186 and 74 mV at 10 mA·cm-2 for OER and HER, respectively. Importantly, after continuously working for 50 h, the current densities of HER and OER both show negligible degeneration. Even, the resulting Mo-NiS/Ni(OH)2 better catalyzes water splitting, yielding a current density of 10 mA·cm-2 at a cell voltage of 1.5 V and outperforming Pt/C-IrO2 couple (1.53 V). This result demonstrates that transition metal doping and heterogeneous interface engineering are useful means for conventional catalyst design.
Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.
Jiao, Y.; Zheng, Y.; Jaroniecb, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086.
Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541.
Gu, Y.; Xi, B. J.; Wei, R. C.; Fu, Q.; Qian, Y. T.; Xiong, S. L. Sponge assembled by graphene nanocages with double active sites to accelerate alkaline her kinetics. Nano Lett. 2020, 20, 8375-8383.
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.
Symes, M. D.; Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 2013, 5, 403-409.
Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568-7579.
Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.
Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196-7225.
Wei, R. C.; Gu, Y.; Zou, L. L.; Xi, B. J.; Zhao, Y. X.; Ma, Y. N.; Qian, Y. T.; Xiong, S. L.; Xu, Q. Nanoribbon superstructures of graphene nanocages for efficient electrocatalytic hydrogen evolution. Nano Lett. 2020, 20, 7342-7349.
Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417-10430.
Zhu, K. K.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.
Wang, C.; Qi, L. M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 17219-17224.
Zhang, L.; Liu, B. R.; Zhang, N.; Ma, M. M. Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media. Nano Res. 2018, 11, 323-333.
Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Huang, X. W.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis. Adv. Energy Mater. 2019, 9, 1901130.
Dutta, S.; Han, H. S.; Je, M.; Choi, H.; Kwon, H. J.; Park, K.; Indra, A.; Kim, K. M.; Paik, U.; Song, T. Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction. Nano Energy 2020, 67, 104245.
Yao, N.; Li, P.; Zhou, Z. R.; Zhao, Y. M.; Cheng, G. Z.; Chen, S. L.; Luo, W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449.
Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245-253.
Wu, Y. T.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098-2105.
Yan, Y. T.; Lin, J. H.; Cao, J.; Guo, S.; Zheng, X. H.; Feng, J. C.; Qi, J. L. Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies. J. Mater. Chem. A 2019, 7, 24486-24492.
Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.
Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.
Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383-393.
Li, X. P.; Wang, Y.; Wang, J. J.; Da, Y. M.; Zhang, J. F.; Li, L. L.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 2003414.
Yan, Y. T.; Wang, P. C.; Lin, J. H.; Cao, J.; Qi, J. L. Modification strategies on transition metal-based electrocatalysts for efficient water splitting. J. Energy Chem. 2021, 58, 446-462.
Zhong, W. W.; Wang, Z. P.; Gao, N.; Huang, L. G.; Lin, Z. P.; Liu, Y. P.; Meng, F. Q.; Deng, J.; Jin, S. F.; Zhang, Q. H. et al. Coupled vacancy pairs in Ni-doped CoSe for improved electrocatalytic hydrogen production through topochemical deintercalation. Angew. Chem., Int. Ed. 2020, 59, 22743-22748.
Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411-419.
Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495-503.
An, L.; Zhang, Z. Y.; Feng, J. R.; Lv, F.; Li, Y. X.; Wang, R.; Lu, M.; Gupta, R. B.; Xi, P. X.; Zhang, S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 2018, 140, 17624-17631.
Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.
Liang, Q. H.; Zhong, L. X.; Du, C. F.; Luo, Y. B.; Zhao, J.; Zheng, Y.; Xu, J. W.; Ma, J. M.; Liu, C. T.; Li, S. Z. et al. Interfacing epitaxial dinickel phosphide to 2D nickel thiophosphate nanosheets for boosting electrocatalytic water splitting. ACS Nano 2019, 13, 7975-7984.
Du, C.; Men, Y. N.; Hei, X. Z.; Yu, J. H.; Cheng, G. Z.; Luo, W. Mo-doped Ni3S2 nanowires as high-performance electrocatalysts for overall water splitting. ChemElectroChem 2018, 5, 2564-2570.
An, L.; Feng, J. R.; Zhang, Y.; Wang, R.; Liu, H. W.; Wang, G. C.; Cheng, F. Y.; Xi, P. X. Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 2019, 29, 1805298.
Jia, Q.; Wang, X. X.; Wei, S.; Zhou, C. L.; Wang, J. W.; Liu, J. Q. Porous flower-like Mo-doped NiS heterostructure as highly efficient and robust electrocatalyst for overall water splitting. Appl. Surf. Sci. 2019, 484, 1052-1060.
Hung, T. F.; Yin, Z. W.; Betzler, S. B.; Zheng, W. J.; Yang, J.; Zheng, H. M. Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 2019, 367, 115-122.
Shang, X.; Zhang, X. Y.; Xie, J. Y.; Dong, B.; Chi, J. Q.; Guo, B. Y.; Yang, M.; Chai, Y. M.; Liu, C. G. Double-catalytic-site engineering of nickel-based electrocatalysts by group VB metals doping coupling with in-situ cathodic activation for hydrogen evolution. Appl. Catal. B Environ. 2019, 285, 117984.
Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.
Luo, X, ; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. N.; He, J. W.; Shi, Z. H.; Li, N. et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.
Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. , Int. Ed. 2016, 55, 6702-6707.
Xiao, X.; Huang, D. K.; Fu, Y. Q.; Wen, M.; Jiang, X. X.; Lv, X. W.; Li, M.; Gao, L.; Liu, S. S.; Wang, M. K. et al. Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces. 2018, 10, 4689-4696.
Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.
Lv, L.; Chang, Y. X.; Ao, X.; Li, Z. S.; Li, J. G.; Wu, Y.; Xue, X. Y.; Cao, Y. L.; Hong, G.; Wang, C. D. Interfacial electron transfer on heterostructured Ni3Se4/FeOOH endows highly efficient water oxidation in alkaline solutions. Mater. Today Energy 2020, 17, 100462.
Xu, Q. C.; Jiang, H.; Zhang, H. X.; Hu, Y. J.; Li, C. Z. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl. Catal. B Environ. 2019, 242, 60-66.
Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.
Li, Q.; Wang, D. W.; Han, C.; Ma, X.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A. 2018, 6, 8233-8237.
Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431-5441.
Zhang, D. L.; Mou, H. Y.; Lu, F.; Song, C. X.; Wang, D. B. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Appl. Catal. B Environ. 2019, 254, 471-478.
Xiong, P.; Zhang, X. Y.; Wan, H.; Wang, S. J.; Zhao, Y. Z.; Zhang, J. Q.; Zhou, D.; Gao, W. C.; Ma, R. Z.; Sasaki, T. et al. Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 2019, 19, 4518-4526.
Jin, L. J.; Xu, H.; Wang, C.; Wang, Y.; Shang, H. Y.; Du, Y. K. Multi-dimensional collaboration promotes the catalytic performance of 1D MoO3 nanorods decorated with 2D NiS nanosheets for efficient water splitting. Nanoscale 2020, 12, 21850-21856.
Li, F.; Xu, R. C.; Li, Y. M.; Liang, F.; Zhang, D. F.; Fu, W. F.; Lv, X. J. N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon 2019, 145, 521-528.
Zhou, J. Q.; Yu, L.; Zhu, Q. C.; Huang, C. Q.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18118-18125.
Wang, H. H.; Liu, T.; Bao, K.; Cao, J.; Feng, J. C.; Qi, J. L. W doping dominated NiO/NiS2 interfaced nanosheets for highly efficient overall water splitting. J. Colloid Interface Sci. 2020, 562, 363-369.
Hu, C. L.; Zhang, L.; Zhao, Z. J.; Li, A.; Chang, X. X.; Gong, J. L. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1705538.
Zhai, Z. J.; Li, C.; Zhang, L.; Wu, H. C.; Zhang, L.; Tang, N.; Wang, W.; Gong, J. L. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A 2018, 6, 9833-9838.
Hua, L. Y.; Zeng, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Shi, L.; Zhu, C. Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal. B Environ. 2020, 273, 119014.
Xue, Z. Q.; Li, X.; Liu, Q. L.; Cai, M. K.; Liu, K.; Liu, M.; Ke, Z. F.; Liu, X. L.; Li, G. Q. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1900430.
Zhang, R.; Huang, J.; Chen, G. L.; Chen, W.; Song, C. S.; Li, C. R.; Ostrikov, K. In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting. Appl. Catal. B Environ. 2019, 254, 414-423.