AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel

Shanshan Zhang1,§Yingzhou Li2,§Lei Feng1Qingwang Xue3Zhiyong Gao4Chenho Tung1Di Sun1( )
School of Chemistry and Chemical Engineering,State Key Laboratory of Crystal Materials, Shandong University,Jionan,250100,China;
Shandong Provincial Key Laboratory of Molecular Engineering,Qilu University of Technology (Shandong Academy of Science),Jionan,250353,China;
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology,and School of Chemistry and Chemical Engineering, Liaocheng University,Liaocheng,252000,China;
School of Chemistry and Chemical Engineering,Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University,Xinxiang,453007,China;

§ Shanshan Zhang and Yingzhou Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Two diphosphine-protected superatom gold selenido nanoclusters, [Au8Se2(dppm)4]2+ (SD/Au8a, dppm = Ph2PCH2PPh2) and [Au8Se2(dppe)4]2+ (SD/Au8b, dppe = Ph2P(CH2)2PPh2), were obtained by the reduction of [Au(SMe2)Cl] in the presence of Ph3PSe as the selenium ion releasing agents. Both can be regarded as "superatoms" with 1S2 configuration based on the spherical Jellium model. Despite the same metal–ligand binding motifs on the surface and the intrinsic C2 molecular symmetry, the configurations of Au8Se2 kernels in them are different in terms of Au–Au bonded metallic frameworks. SD/Au8a displays a heart-shaped [core + exo] type structure (Au4 tetrahedron core + two exo Au2Se units), whereas the two exo Au2Se counterparts in SD/Au8b are additionally locked by an obvious Au–Au bond, forming a distorted hexagonal Au6 ring with two capping AuSe units appended above and below it. Consequently, they showed different photophysical properties as reflected by their electronic absorption and emission spectra. Especially, both SD/Au8a and SD/Au8b exhibit blue-shifted thermochromic luminescence upon cooling from 293 to 83 K but the latter exhibits anomalous emission intensity evolution trends due to the occurrence of temperature-induced phase transition as revealed by varied-temperature crystallographic analyses. This work not only clearly illustrates the significance of ligands on tuning the kernel structure but also provides two rarely comparable examples for better understanding of the structure-property relationship of gold nanoclusters.

Electronic Supplementary Material

Download File(s)
12274_2021_3558_MOESM1_ESM.pdf (7.5 MB)
12274_2021_3558_MOESM2_ESM.pdf (429.1 KB)
12274_2021_3558_MOESM3_ESM.pdf (455.2 KB)
12274_2021_3558_MOESM4_ESM.cif (2.8 MB)
12274_2021_3558_MOESM5_ESM.cif (5.8 MB)

References

1

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413.

2

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208-8271.

3

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

4

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526-622.

5

Li, Y. W.; Jin, R. C. Seeing ligands on nanoclusters and in their assemblies by X-ray crystallography: Atomically precise nanochemistry and beyond. J. Am. Chem. Soc. 2020, 142, 13627-13644.

6

Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle[N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754-3755.

7

Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280-8281.

8

Dolamic, I.; Knoppe, S.; Dass, A.; Bürgi, T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 2012, 3, 798.

9

Liu, C.; Li, T.; Li, G.; Nobusada, K.; Zeng, C. J.; Pang, G. S.; Rosi, N. L.; Jin, R. C. Observation of body-centered cubic gold nanocluster. Angew. Chem. , Int. Ed. 2015, 54, 9826-9829.

10

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549-1565.

11

Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A. Au24(SAdm)16 nanomolecules: X-ray crystal structure, theoretical analysis, adaptability of adamantane ligands to form Au23(SAdm)16 and Au25(SAdm)16, and its relation to Au25(SR)18. J. Am. Chem. Soc. 2014, 136, 14933-14940.

12

Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000-5005.

13

Chen, S.; Wang, S. X.; Zhong, J.; Song, Y. B.; Zhang, J.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. The structure and optical properties of the[Au18(SR)14] nanocluster. Angew. Chem. , Int. Ed. 2015, 54, 3145- 3149.

14

Zeng, C. J.; Chen, Y. X.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 2016, 354, 1580-1584.

15

Jensen, K. M. Ø.; Juhas, P.; Tofanelli, M. A.; Heinecke, C. L.; Vaughan, G.; Ackerson, C. J.; Billinge, S. J. L. Polymorphism in magic- sized Au144(SR)60 clusters. Nat. Commun. 2016, 7, 11859.

16

Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 2016, 320-321, 238-250.

17

Chen, T. K.; Fung, V.; Yao, Q. F.; Luo, Z. T.; Jiang, D. E.; Xie, J. P. Synthesis of water-soluble[Au25(SR)18]- using a stoichiometric amount of NaBH4. J. Am. Chem. Soc. 2018, 140, 11370-11377.

18

Huang, Z.; Ishida, Y.; Yonezawa, T. Basic[Au25(SCH2CH2Py)18]-·Na+ clusters: Synthesis, layered crystallographic arrangement, and unique surface protonation. Angew. Chem. , Int. Ed. 2019, 58, 13411- 13415.

19

Kurashige, W.; Yamaguchi, M.; Nobusada, K.; Negishi, Y. Ligand- induced stability of gold nanoclusters: Thiolate versus selenolate. J. Phys. Chem. Lett. 2012, 3, 2649-2652.

20

Meng, X. M.; Xu, Q.; Wang, S. X.; Zhu, M. Z. Ligand-exchange synthesis of selenophenolate-capped Au25 nanoclusters. Nanoscale 2012, 4, 4161-4165.

21

Kurashige, W.; Yamazoe, S.; Kanehira, K.; Tsukuda, T.; Negishi, Y. Selenolate-protected Au38 nanoclusters: Isolation and structural characterization. J. Phys. Chem. Lett. 2013, 4, 3181-3185.

22

Song, Y. B.; Wang, S. X.; Zhang, J.; Kang, X.; Chen, S.; Li, P.; Sheng, H. T.; Zhu, M. Z. Crystal structure of selenolate-protected Au24(SeR)20 nanocluster. J. Am. Chem. Soc. 2014, 136, 2963-2965.

23

Song, Y. B.; Zhong, J.; Yang, S.; Wang, S. X.; Cao, T. T.; Zhang, J.; Li, P.; Hu, D. Q.; Pei, Y.; Zhu, M. Z. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale 2014, 6, 13977-13985.

24

Song, Y. B.; Fu, F. Y.; Zhang, J.; Chai, J. S.; Kang, X.; Li, P.; Li, S. L.; Zhou, H. P.; Zhu, M. Z. The magic Au60 nanocluster: A new cluster- assembled material with five Au13 building blocks. Angew. Chem. , Int. Ed. 2015, 54, 8430-8434.

25

Song, Y. B.; Abroshan, H.; Chai, J. S.; Kang, X.; Kim, H. J.; Zhu, M. Z.; Jin, R. C. Molecular-like transformation from PhSe-protected Au25 to Au23 nanocluster and its application. Chem. Mater. 2017, 29, 3055-3061.

26

Song, Y. B.; Lv, Y.; Zhou, M.; Luo, T. Y.; Zhao, S.; Rosi, N. L.; Yu, H. Z.; Zhu, M. Z.; Jin R. C. Single-ligand exchange on an Au-Cu bimetal nanocluster and mechanism. Nanoscale 2018, 10, 12093- 12099.

27

Kang, X.; Zhu, M. Z. Metal nanoclusters stabilized by selenol ligands. Small 2019, 15, 1902703.

28

Wan, X. K.; Tang, Q.; Yuan, S. F.; Jiang, D. E.; Wang, Q. M. Au19 nanocluster featuring a V-shaped alkynyl-gold Motif. J. Am. Chem. Soc. 2015, 137, 652-655.

29

Wan, X. K.; Yuan, S. F.; Tang, Q.; Jiang, D. E.; Wang, Q. M. Alkynyl- protected Au23 nanocluster: A 12-electron system. Angew. Chem. , Int. Ed. 2015, 54, 5977-5980.

30

Wan, X. K.; Xu, W. W.; Yuan, S. F.; Gao, Y.; Zeng, X. C.; Wang, Q. M. A near-infrared-emissive alkynyl-protected Au24 nanocluster. Angew. Chem. , Int. Ed. 2015, 54, 9683-9686.

31

Lei, Z.; Wan, X. K.; Yuan, S. F.; Wang, J. Q.; Wang, Q. M. Alkynyl- protected gold and gold-silver nanoclusters. Dalton Trans. 2017, 46, 3427-3434.

32

Wan, X. K.; Guan, Z. J.; Wang, Q. M. Homoleptic alkynyl-protected gold nanoclusters: Au44(PhC≡C)28 and Au36(PhC≡C)24. Angew. Chem. , Int. Ed. 2017, 56, 11494-11497.

33

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465-2474.

34

Lei, Z.; Li, J. J.; Wan, X. K.; Zhang, W. H.; Wang. Q. M. Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144. Angew. Chem. , Int. Ed. 2018, 57, 8639-8643.

35

Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D3 symmetry. Angew. Chem. , Int. Ed. 2019, 58, 1083-1087.

36

Shichibu, Y.; Kamei, Y.; Konishi, K. Unique[core+two] structure and optical property of a dodeca-ligated undecagold cluster: Critical contribution of the exo gold atoms to the electronic structure. Chem. Commun. 2012, 48, 7559-7561.

37

Wan, X. K.; Lin, Z. W.; Wang, Q. M. Au20 nanocluster protected by hemilabile phosphines. J. Am. Chem. Soc. 2012, 134, 14750-14752.

38

Gutrath, B. S.; Oppel, I. M.; Presly, O.; Beljakov, I.; Meded, V.; Wenzel, W.; Simon, U. [Au14(PPh3)8(NO3)4]: An example of a new class of Au(NO3)-ligated superatom complexes. Angew. Chem. , Int. Ed. 2013, 52, 3529-3532.

39

Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92-95.

40

Wan, X. K.; Yuan, S. F.; Lin, Z. W.; Wang, Q. M. A chiral gold nanocluster Au20 protected by tetradentate phosphine ligands. Angew. Chem. , Int. Ed. 2014, 53, 2923-2926.

41

Chen, J.; Zhang, Q. F.; Williard, P. G.; Wang, L. S. Synthesis and structure determination of a new Au20 nanocluster protected by tripodal tetraphosphine ligands. Inorg. Chem. 2014, 53, 3932-3934.

42

Yao, L. Y.; Yam, V. W. W. Diphosphine-stabilized small gold nanoclusters: From crystal structure determination to ligation-driven symmetry breaking and anion exchange properties. J. Am. Chem. Soc. 2016, 138, 15736-15742.

43

Jin, S.; Du, W. J.; Wang, S. X.; Kang, X.; Chen, M.; Hu, D. Q.; Chen, S.; Zou, X. J.; Sun, G. D.; Zhu, M. Z. Thiol-induced synthesis of phosphine-protected gold nanoclusters with atomic precision and controlling the structure by ligand/metal engineering. Inorg. Chem. 2017, 56, 11151-11159.

44

Zhang, S. S.; Feng, L.; Senanayake, R. D.; Aikens, C. M.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D. Diphosphine-protected ultrasmall gold nanoclusters: Opened icosahedral Au13 and heart-shaped Au8 clusters. Chem. Sci. 2018, 9, 1251-1258.

45

Sugiuchi, M.; Shichibu, Y.; Konishi, K. An inherently chiral Au24 framework with double-helical hexagold strands. Angew. Chem. , Int. Ed. 2018, 57, 7855-7859.

46

Zhang, S. S.; Senanayake, R. D.; Zhao, Q. Q.; Su, H. F.; Aikens, C. M.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. [Au18(dppm)6Cl4]4+: A phosphine-protected gold nanocluster with rich charge states. Dalton Trans. 2019, 48, 3635-3640.

47

Kenzler, S.; Fetzer, F.; Schrenk, C.; Pollard, N.; Frojd, A. R.; Clayborne, A. Z.; Schnepf, A. Synthesis and characterization of three multi-shell metalloid gold clusters Au32(R3P)12Cl8. Angew. Chem. , Int. Ed. 2019, 58, 5902-5905.

48

Yuan, S. F.; Xu, C. Q.; Li, J.; Wang, Q. M. A ligand-protected golden fullerene: The dipyridylamido Au328+ nanocluster. Angew. Chem. , Int. Ed. 2019, 58, 5906-5909.

49

Li, Y. Z.; Ganguly, R.; Hong, K. Y.; Li, Y. X.; Tessensohn, M. E.; Webster, R.; Leong, W. K. Stibine-protected Au13 nanoclusters: Syntheses, properties and facile conversion to GSH-protected Au25 nanocluster. Chem. Sci. 2018, 9, 8723-8730.

50

Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-Heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419-425.

51

Narouz, M. R.; Takano, S.; Lummis, P. A; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G. et al. Robust, highly luminescent Au13 superatoms protected by N-heterocyclic carbenes. J. Am. Chem. Soc. 2019, 141, 14997-15002.

52

Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem. , Int. Ed. 2019, 58, 17731-17735.

53

Shichibu, Y.; Konishi, K. HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: A novel synthetic route to "magic-number" Au13 clusters. Small 2010, 6, 1216-1220.

54

Copley, R. C. B.; Mingos, D. M. P. The novel structure of the[Au11(PMePh2)10]3+ cation: Crystal structures of[Au11(PMePh2)10][C2B9H12]3·4thf and[Au11(PMePh2)10][C2B9H12]3 (thf = tetrahydrofuran). J. Chem. Soc., Dalton Trans. 1996, 479-489.

55

Gutrath, B. S.; Englert, U.; Wang, Y. T.; Simon, U. A missing link in undecagold cluster chemistry: Single-crystal X-ray analysis of[Au11(PPh3)7Cl3]. Eur. J. Inorg. Chem. 2013, 2013, 2002-2006.

56

McKenzie, L. C.; Zaikova, T. O.; Hutchison, J. E. Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and[Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 2014, 136, 13426-13435.

57

Manassero, M.; Naldini, L.; Sansoni, M. A new class of gold cluster compounds. Synthesis and X-ray structure of the octakis(triphenylphosphinegold) dializarinsulphonate, [Au8(PPh3)8](aliz)2. J. Chem. Soc., Chem. Commun. 1979, 385-386.

58

Van der Velden, J. W. A.; Bour, J. J.; Bosman, W. P.; Noordik, J. H. Reactions of cationic gold clusters with lewis bases. Preparation and X-ray structure investigation of[Au8(PPh3)7](NO3)2·2CH2Cl2 and Au6(PPh3)4[Co(CO)4]2. Inorg. Chem. 1983, 22, 1913-1918.

59

McPartlin, M.; Mason, R.; Malatesta, L. Novel cluster complexes of gold(0)-gold(Ⅰ). J. Chem. Soc. D 1969, 334.

60

Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Hä;kkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278-3281.

61

Qu, M.; Li, H.; Xie, L. H.; Yan, S. T.; Li, J. R.; Wang, J. H.; Wei, C. Y.; Wu, Y. W.; Zhang, X. M. Bidentate phosphine-assisted synthesis of an all-alkynyl-protected Ag74 nanocluster. J. Am. Chem. Soc. 2017, 139, 12346-12349.

62

Kang, X.; Xu, F. Q.; Wei, X.; Wang, S. X.; Zhu, M. Z. Valence self- regulation of sulfur in nanoclusters. Sci. Adv. 2019, 5, eaax7863.

63

Sugiuchi, M.; Maeba, J.; Okubo, N.; Iwamura, M.; Nozaki, K.; Konishi, K. Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc. 2017, 139, 17731-17734.

64

Gan, Z. B.; Chen, J. S.; Wang, J.; Wang, C. M.; Li, M. B.; Yao, C. H.; Zhuang, S. L.; Xu, A.; Li, L. L.; Wu, Z. K. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nat. Commun. 2017, 8, 14739.

65

Higaki, T.; Liu, C.; Zhou, M.; Luo, T. Y.; Rosi, N. L.; Jin, R. C. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-Nap)41 and its implications. J. Am. Chem. Soc. 2017, 139, 9994-10001.

66

Liu, X.; Chen, J. S.; Yuan, J. Y.; Li, Y. Z.; Li, J.; Zhou, S. M.; Yao, C. H.; Liao, L. W.; Zhuang, S. L.; Zhao, Y. et al. A silver nanocluster containing interstitial sulfur and unprecedented chemical bonds. Angew. Chem. , Int. Ed. 2018, 57, 11273-11277.

67

Kenzler, S.; Schrenk, C.; Schnepf, A. Au108S24(PPh3)16: A highly symmetric nanoscale gold cluster confirms the general concept of metalloid clusters. Angew. Chem. , Int. Ed. 2017, 56, 393-396.

68

Kenzler, S.; Schrenk, C.; Frojd, A. R.; Häkkinen, H.; Clayborne, A. Z.; Schnepf, A. Au70S20(PPh3)12: An intermediate sized metalloid gold cluster stabilized by the Au4S4 ring motif and Au-PPh3 groups. Chem. Commun. 2018, 54, 248-251.

69

Keter, F. K.; Guzei, I. A.; Nell, M.; van Zyl, W. E.; Darkwa, J. Phosphinogold(Ⅰ) dithiocarbamate complexes: Effect of the nature of phosphine ligand on anticancer properties. Inorg. Chem. 2014, 53, 2058-2067.

70

Hau, F. K. W.; Lee, T. K. M.; Cheng, E. C. C.; Au, V. K. M.; Yam, V. W. W. Luminescence color switching of supramolecular assemblies of discrete molecular decanuclear gold(Ⅰ) sulfido complexes. Proc. Natl. Acad. Sci. USA 2014, 111, 15900-15905.

71

Yao, L. Y.; Hau, F. K. W.; Yam, V. W. W. Addition reaction-induced cluster-to-cluster transformation: Controlled self-assembly of luminescent polynuclear gold(Ⅰ) μ3-sulfido clusters. J. Am. Chem. Soc. 2014, 136, 10801-10806.

72

Yao, L. Y.; Yam, V. W. W. Photoinduced isomerization-driven structural transformation between decanuclear and octadecanuclear gold(Ⅰ) sulfido clusters. J. Am. Chem. Soc. 2015, 137, 3506-3509.

73

Yu, W.; Guggolz, L.; Fuhr, O.; Fenske, D.; Dehnen, S. Syntheses, structures and theoretical investigations of[Au10S2(PPh2)2(dppma2)4(dppma3)]·[Au6S2(dppma2)2(dppma3)]. Dalton Trans. 2015, 44, 9363-9366.

74

Yao, L. Y.; Lee, T. K. M.; Yam, V. W. W. Thermodynamic-driven self-assembly: Heterochiral self-sorting and structural reconfiguration in gold(Ⅰ)-sulfido cluster system. J. Am. Chem. Soc. 2016, 138, 7260-7263.

75

Polgar, A. M.; Weigend, F.; Zhang, A.; Stillman, M. J.; Corrigan, J. F. A N-heterocyclic carbene-stabilized coinage metal-chalcogenide framework with tunable optical properties. J. Am. Chem. Soc. 2017, 139, 14045-14048.

76

Yu, W.; Wang, Y. X.; Fuhr, O.; Fenske, D.; Dehnen, S. [Au12(PPh2)2S4(L2)4]2+ (L2 = 3, 4-bis(diphenylphosphino)-2, 5- bis(trimethylsilyloxy)furan): An Au12 unit protected by modified maleic anhydride phosphine ligands. Dalton Trans. 2018, 47, 1032- 1035.

77

Liu, C. Y.; Wei, X. R.; Chen, Y.; Wang, H. F.; Ge, J. F.; Xu, Y. J.; Ren, Z. G.; Braunstein, P.; Lang, J. P. Tetradecanuclear and octadecanuclear gold(Ⅰ) sulfido clusters: Synthesis, structures, and luminescent selective tracking of lysosomes in living cells. Inorg. Chem. 2019, 58, 3690-3697.

78

Van der Velden, J. W. A.; Bour, J. J.; Bosman, W. P.; Noordik, J. H. Synthesis and X-ray crystal structure determination of the cationic gold cluster compound[Au8(PPh3)7](NO3)2. J. Chem. Soc., Chem. Commun. 1981, 1218-1219

79

Takano, S.; Tsukuda, T. Amplification of the optical activity of gold clusters by the proximity of BINAP. J. Phys. Chem. Lett. 2016, 7, 4509-4513.

80

Yang, Y.; Sharp, P. R. New gold clusters[Au8L6](BF4)2 and[(AuL)4](BF4)2 (L = P(mesityl)3). J. Am. Chem. Soc. 1994, 116, 6983- 6984.

81

Kobayashi, N.; Kamei, Y.; Shichibu, Y.; Konishi, K. Protonation- induced chromism of pyridylethynyl-appended[core+exo]-type Au8 clusters. Resonance-coupled electronic perturbation through π-conjugated group. J. Am. Chem. Soc. 2013, 135, 16078-16081.

82

Shichibu, Y.; Suzuki, K.; Konishi, K. Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale 2012, 4, 4125- 4129.

83

Chakraborty, P.; Baksi, A.; Khatun, E.; Nag, A.; Ghosh, A.; Pradeep, T. Dissociation of gas phase ions of atomically precise silver clusters reflects their solution phase stability. J. Phys. Chem. C 2017, 121, 10971-10981.

84

Robinson, P. S. D.; Nguyen, T. L.; Lioe, H.; O'Hair, R. A. J.; Khairallah, G. N. Synthesis and gas-phase uni- and bi-molecular reactivity of bisphosphine ligated gold clusters, [AuxLy]n+. Int. J. Mass Spectrom. 2012, 330-332, 109-117.

85

Zavras, A.; Khairallah, G. N.; O'Hair, R. A. J. Bis(diphenylphosphino)methane ligated gold cluster cations: Synthesis and gas-phase unimolecular reactivity. Int. J. Mass Spectrom. 2013, 354-355, 242-248.

86

Van Der Velden, J. W. A.; Bour, J. J.; Vollenbroek, F. A.; Beurskens, P. T.; Smits, J. M. M. Synthesis of a new pentanuclear gold cluster by metal evaporation. Preparation and X-ray structure determination of[tris{bis(diphenylphosphino)methane}][bis(diphenylphosphino)methanido]pentagold dinitrate. J. Chem. Soc., Chem. Commun. 1979, 1162-1163.

87

Shichibu, Y.; Konishi, K. Electronic properties of[Core+exo]-type gold clusters: Factors affecting the unique optical transitions. Inorg. Chem. 2013, 52, 6570-6575.

88

Yam, V. W. W.; Au, V. K. M.; Leung, S. Y. L. Light-emitting self- assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 2015, 115, 7589-7728.

89

Wang, Q. M.; Lee, Y. A.; Crespo, O.; Deaton, J.; Tang, C.; Gysling, H. J.; Gimeno, M. C.; Larraz, C.; Villacampa, M. D.; Laguna, A. et al. Intensely luminescent gold(Ⅰ)-silver(Ⅰ) cluster complexes with tunable structural features. J. Am. Chem. Soc. 2004, 126, 9488-9489.

90

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422-2457.

91

Yan, Z. H.; Li, X. Y.; Liu, L. W.; Yu, S. Q.; Wang, X. P.; Sun, D. Single-crystal to single-crystal phase transition and segmented thermochromic luminescence in a dynamic 3D interpenetrated AgI coordination network. Inorg. Chem. 2016, 55, 1096-1101.

92

Mirzadeh, N.; Privér, S. H.; Blake, A. J.; Schmidbaur, H.; Bhargava, S. K. Innovative molecular design strategies in materials science following the aurophilicity concept. Chem. Rev. 2020, 120, 7551-7591.

Nano Research
Pages 3343-3351
Cite this article:
Zhang S, Li Y, Feng L, et al. Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel. Nano Research, 2021, 14(10): 3343-3351. https://doi.org/10.1007/s12274-021-3558-x
Topics:

896

Views

21

Crossref

20

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 11 February 2021
Revised: 20 March 2021
Accepted: 01 May 2021
Published: 04 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return