Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis

Mufan Li1,3,§Bei Zhang1,§Tao Cheng5Sunmoon Yu2,3Sheena Louisia1,3Chubai Chen1Shouping Chen2Stefano Cestellos-Blanco2William A. Goddard III5Peidong Yang1,2,3,4()
Department of Chemistry, ,University of California,Berkeley, California,94720,USA;
Materials Science and Engineering,University of California, Berkeley,California,94720,USA;
Chemical Science Division,Lawrence Berkeley National Laboratory,Berkeley, California,94720,USA;
Kavli Energy NanoScience Institute,Berkeley, California,94720,USA;
Materials and Process Simulation Center,California Institute of Technology,Pasadena, California,91125,USA;

§ Mufan Li and Bei Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The biggest challenge of exploring the catalytic properties of under-coordinated nanoclusters is the issue of stability. We demonstrate herein that chemical dopants on sulfur-doped graphene (S-G) can be utilized to stabilize ultrafine (sub-2 nm) Au25(PET)18 clusters to enable stable nitrogen reduction reaction (NRR) without significant structural degradation. The Au25@S-G exhibits an ammonia yield rate of 27.5 μgNH3·mgAu-1·h-1 at -0.5 V with faradic efficiency of 2.3%. More importantly, the anchored clusters preserve ~ 80% NRR activity after four days of continuous operation, a significant improvement over the 15% remaining ammonia production rate for clusters loaded on undoped graphene tested under the same conditions. Isotope labeling experiments confirmed the ammonia was a direct reaction product of N2 feeding gas instead of other chemical contaminations. Ex-situ X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy of post-reaction catalysts reveal that the sulfur dopant plays a critical role in stabilizing the chemical state and coordination environment of Au atoms in clusters. Further ReaxFF molecular dynamics (RMD) simulation confirmed the strong interaction between Au nanoclusters (NCs) and S-G. This substrate-anchoring process could serve as an effective strategy to study ultrafine nanoclusters' electrocatalytic behavior while minimizing the destruction of the under-coordinated surface motif under harsh electrochemical reaction conditions.

Electronic Supplementary Material

Video
12274_2021_3561_MOESM1_ESM.mp4
12274_2021_3561_MOESM2_ESM.mp4
Download File(s)
12274_2021_3561_MOESM3_ESM.pdf (2.9 MB)

References

1

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

2

Liu, L. C.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244-263.

3

Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley, R. E. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys. 1992, 96, 3319-3329.

4

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.

5

Buceta, D.; Piñeiro, Y.; Vázquez-Vázquez, C.; Rivas, J.; López-Quintela, M. A. Metallic clusters: Theoretical background, properties and synthesis in microemulsions. Catalysts 2014, 4, 356-374.

6

Zhu, Y.; Qian, H. F.; Drake, B. A.; Jin, R. C. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew. Chem., Int. Ed. 2010, 122, 1317-1320.

7

Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotech. 2018, 13, 900-905.

8

Austin, N.; Zhao, S.; McKone, J; Jin, R.; Mpourmpakis, G. Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters. Catal. Sci. Technol. 2018, 8, 3795-3805.

9

Kauffman, D. R.; Thakkar, J.; Siva, R.; Matranga, C.; Ohodnicki, P. R.; Zeng, C. J.; Jin, R. C. Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 2015, 7, 15626-15632.

10

Kim, H. Y.; Lee, H. M.; Henkelman, G. Co oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560-1570.

11

Zhang, B.; Chen, C. B.; Chuang, W.; Chen, S. P.; Yang, P. D. Size transformation of the Au22(SG)18 nanocluster and its surface-sensitive kinetics. J. Am. Chem. Soc. 2020, 142, 11514-11520.

12

Vilhelmsen, L. B.; Walton, K. S.; Sholl, D. S. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J. Am. Chem. Soc. 2012, 134, 12807-12816.

13

Dou, L.; Wu, S. N.; Chen, D. L.; He, S. H.; Wang, F. F.; Zhu, W. D. Structures and electronic properties of Au clusters encapsulated ZIF-8 and ZIF-90. J. Phys. Chem. C 2018, 122, 8901-8909.

14

Li, J. P.; Wang, W. Y.; Chen, W. X.; Gong, Q. M.; Luo, J.; Lin, R. Q.; Xin, H. L.; Zhang, H.; Wang, D. S.; Peng, Q. et al. Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the "size shackles". Nano Res. 2018, 11, 4774-4785.

15

Liu, L. C.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 2017, 16, 132-138.

16

Häkkinen, H. The gold-sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443-455.

17

Bürgi, T. Properties of the gold-sulphur interface: From self-assembled monolayers to clusters. Nanoscale 2015, 7, 15553-15567.

18

Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237-10243.

19

Qiu, Y.; Peng, X. Y.; Lü, F.; Mi, Y. Y.; Zhuo, L. C.; Ren, J. Q.; Liu, X. J.; Luo, J. Single-atom catalysts for the electrocatalytic reduction of nitrogen to ammonia under ambient conditions. Chem. —Asian J. 2019, 14, 2770-2779.

20

Wang, H. J.; Yu, H. J.; Wang, Z. Q.; Li, Y. H.; Xu, Y.; Li, X. N.; Xue, H. R.; Wang, L. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Nano Micro Small 2019, 15, 1804769.

21

Liu, D.; Zhang, G.; Ji, Q. H.; Zhang, Y. Y.; Li, J. H. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate. ACS Appl. Mater. Interfaces 2019, 11, 25758-25765.

22

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504-508.

23

Zhang, P. X-ray spectroscopy of gold-thiolate nanoclusters. J. Phys. Chem. C 2014, 118, 25291-25299.

24

Mathew, A.; Varghese, E.; Choudhury, S.; Pal, S. K.; Pradeep, T. Efficient red luminescence from organic-soluble Au25 clusters by ligand structure modification. Nanoscale 2015, 7, 14305-14315.

25

MacDonald, M. A.; Chevrier, D. M.; Zhang, P.; Qian, H.; Jin, R. The structure and bonding of Au25(SR)18 nanoclusters from EXAFS: The interplay of metallic and molecular behavior. J. Phys. Chem. C 2011, 115, 15282-15287.

Nano Research
Pages 3509-3513
Cite this article:
Li M, Zhang B, Cheng T, et al. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Research, 2021, 14(10): 3509-3513. https://doi.org/10.1007/s12274-021-3561-2
Topics:
Metrics & Citations  
Article History
Copyright
Return