AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An adjustable multi-color detector based on regulating TiO2 surface adsorption and multi-junction synergy

Tao Ji1( )Shuqing He1,3Fujin Ai1,3Jianghong Wu1Li Yan1Junqing Hu1,3( )Meiyong Liao2
College of Health Science and Environmental Engineering,Shenzhen Technology University,Shenzhen,518118,China;
Research Center for Functional Materials,National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba,Ibaraki,305-0044,Japan;
Shenzhen Bay Laboratory,Shenzhen,518132,China;
Show Author Information

Graphical Abstract

Abstract

A TiO2-based multi-color photodetector with controlled photoelectric response to ultraviolet (UV) and visible light is developed by using band regulation technologies such as multi-junction synergy and surface adsorption. This photodetector is manufactured via a continuous process including magnetron sputtering, hydrothermal growth, hydrogen annealing, spin coating and thermal evaporation assembly to form a structure of N-doped TiO2/hydrogenated-TiO2/p-Si heterojunction. These synergistic effects form electronic potential wells in the device to control the electrical transport and spectral response of photo-generated carriers. In the air, the device exhibits a controllable photodetection ability that responds to visible light at positive voltages and UV light at negative voltages. But in vacuum (< 0.1 Pa), the photodetection ability of the device at negative voltages is greatly reduced due to the lack of barrier effect caused by surface adsorption. On the contrary, the photodetection ability at positive voltage (e.g., 4 V) has been greatly improved, and the quantum efficiency reaches 206.6% under the 480 nm wavelength light. The device has a controllable ability to detect UV and visible light depending on the environments, which is very useful in the fields of environmental detection, chemical sensing and multi-color communication, etc.

Electronic Supplementary Material

Download File(s)
12274_2021_3565_MOESM1_ESM.pdf (1.6 MB)

References

1

Schermelleh, L.; Carlton, P. M.; Haase, S.; Shao, L.; Winoto, L.; Kner, P.; Burke, B.; Cardoso, M. C.; Agard, D. A.; Gustafsson, M. G. L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008, 320, 1332-1336.

2

Sang, L. W.; Hu, J. Q.; Zou, R. J.; Koide, Y.; Liao, M. Y. Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures. Sci. Rep. 2013, 3, 2368.

3

Oh, S.; Kim, C. K.; Kim, J. High responsivity β-Ga2O3 metal- semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photonics 2018, 5, 1123-1128.

4

Sang, L. W.; Liao, M. Y.; Liang, Q. F.; Takeguchi, M.; Dierre, B.; Shen, B.; Sekiguchi, T.; Koide, Y.; Sumiya, M. A multilevel intermediate-band solar cell by InGaN/GaN quantum dots with a strain-modulated structure. Adv. Mater. 2014, 26, 1414-1420.

5

Liao, M. Y. Progress in semiconductor diamond photodetectors and MEMS sensors, Funct. Diam. 2021, 1, 29-46.

6

Liu, B. X.; Sun, Y. H.; Wu, Y. H.; Liu, K.; Ye, H. Y.; Li, F. T.; Zhang, L. M.; Jiang, Y.; Wang, R. M. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res. 2021, 14, 982-991.

7
Liu, Q. B.; Liang, L. H.; Shen, H. Z.; Li, D. H.; Zhou, H. Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection. Nano Res., in press, https://doi.org/10.1007/s12274-021-3308-0.
8

Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Q. Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643-650.

9

Yin, B.; Zhang, H. Q.; Qiu, Y.; Luo, Y. M.; Zhao, Y.; Hu, L. Z. The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination. Nanoscale 2017, 9, 17199-17206.

10

Xu, X. J.; Chen, J. X.; Cai, S.; Long, Z. H.; Zhang, Y.; Su, L. X.; He, S. S.; Tang, C. Q.; Liu, P.; Peng, H. S. et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 2018, 30, 1803165.

11

Ji, T.; Liu, Q.; Zou, R. J.; Sun, Y. G.; Xu, K. B.; Sang, L. W.; Liao, M. Y.; Koide, Y.; Yu, L.; Hu, J. Q. An interface engineered multicolor photodetector based on n-Si (111)/TiO2 nanorod array heterojunction. Adv. Funct. Mater. 2016, 26, 1400-1410.

12

Ji, T.; Zhang, Y. F.; Zou, R. J.; Ha, E. N.; Hu, J. Q.; Liao, M. Y. A simple method for preparing a TiO2-based back-gate controlled N-channel MSM-IGFET UV photodetector. J. Mater. Chem. C 2020, 8, 1781-1787.

13

Ji, T.; Liu, Q.; Zou, R. J.; Zhang, Y. F.; Wang, L. L.; Sang, L. W.; Liao, M. L.; Hu, J. Q. Enhanced UV-visible light Photodetectors with a TiO2/Si heterojunction using band engineering. J. Mater. Chem. C 2017, 5, 12848-12856.

14

Ji, T.; Cao, Y. J.; Peng, X.; Zhang, Y. F.; Sun, L.; Wang, L. L.; Zou, R. J.; Sivalingam, Y.; Han, W. H.; Hu, J. Q. A facile method to fabricated UV-Vis photodetectors based on TiO2/Si heterojunction. Appl. Surf. Sci. 2018, 449, 358-362.

15

Guo, Z.; Zhao, D. X.; Liu, Y. C.; Shen, D. Z.; Zhang, J. Y.; Li, B. H. Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si Heterojunction. Appl. Phys. Lett. 2008, 93, 163501.

16

Tian, W.; Zhang, C.; Zhai, T. Y.; Li, S. L.; Wang, X.; Liu, J. W.; Jie, X.; Liu, D. Q.; Liao, M. Y.; Koide, Y. et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv. Mater. 2014, 26, 3088- 3093.

17

Zhou, J.; Gu, Y. D.; Hu, Y. F.; Mai, W. J.; Yeh, P. H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103.

18

Dawson, J. A.; Guo, Y.; Robertson, J. Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance. Appl. Phys. Lett. 2015, 107, 122110.

19

Sun, H.; Chen, S. C.; Peng, W. C.; Wen, C. K.; Wang, X.; Chuang, T. H. The influence of oxygen flow ratio on the optoelectronic properties of p-type Ni1-xO films deposited by ion beam assisted sputtering. Coatings 2018, 8, 168.

20

Zhang, Y. F.; Ji, T.; Zou, R. J.; Ha, E. N.; Hu, X.; Cui, Z.; Xu, C. T.; He, S. A.; Xu, K. B.; Zhang, Y. H. et al. An efficiently enhanced UV- visible light photodetector with a Zn: NiO/p-Si isotype heterojunction. J. Mater. Chem. C 2020, 8, 3498-3508.

21

Zhang, Y. F.; Ji, T.; Zhang, W. L.; Guan, G. Q.; Ren, Q. L.; Xu, K. B.; Huang, X. J.; Zou, R. J.; Hu, J. Q. A self-powered broadband photodetector based on an n-Si(111)/p-NiO heterojunction with high photosensitivity and enhanced external quantum efficiency. J. Mater. Chem. C 2017, 5, 12520-12528.

22

Gurlo, A.; Bârsan, N.; Oprea, A.; Sahm, M.; Sahm, T.; Weimar, U. An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3. Appl. Phys. Lett. 2004, 85, 2280-2282.

23

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603.

24

Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen- treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026-3033.

25

Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nature Mater. 2013, 12, 798-801.

26

Ioannidou, E.; Ioannidi, A.; Frontistis, Z.; Antonopoulou, M.; Tselios, C.; Tsikritzis, D.; Konstantinou, I.; Kennou, S.; Kondarides, D. I.; Mantzavinos, D. Correlating the properties of hydrogenated titania to reaction kinetics and mechanism for the photocatalytic degradation of bisphenol A under solar irradiation. Appl. Catal. B Environ. 2016, 188, 65-76.

27

Wang, C. C.; Wang, K. W.; Perng, T. P. Electron field emission from Fe-doped TiO2 nanotubes. Appl. Phys. Lett. 2010, 96, 143102.

28

Ji, T.; Cui, Z.; Zhang, W. L.; Cao, Y. J.; Zhang, Y. F.; He, S. A.; Xu, M. D.; Sun, Y. G.; Zou, R. J.; Hu, J. Q. UV and visible light synergetic photodegradation using rutile TiO2 nanorod arrays based on a p-n junction. Dalton Trans. 2017, 46, 4296-4302.

29

Mahjouri-Samani, M.; Tian, M. K.; Puretzky, A. A.; Chi, M. F.; Wang, K.; Duscher, G.; Rouleau, C. M.; Eres, G.; Yoon, M.; Lasseter, J. et al. Nonequilibrium synthesis of TiO2 nanoparticle "building blocks" for crystal growth by sequential attachment in pulsed laser deposition. Nano Lett. 2017, 17, 4624-4633.

30

Liu, Z. C.; Ao, J. P.; Li, F. N.; Wang, W.; Wang, J. J.; Zhang, J. W.; Wang, H. X. Photoelectrical characteristics of ultra thin TiO2/diamond photodetector. Mater. Lett. 2017, 188, 52-54.

31

Zhang, J. L.; Wu, Y. M.; Xing, M. Y.; Leghari, S. A. K.; Sajjad, S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 2010, 3, 715-726.

32

Caudillo-Flores, U.; Muñoz-Batista, M. J.; Fernández-García, M.; Kubacka, A. Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Appl. Catal. B Environ. 2018, 238, 533-545.

33

Huang, D. Y.; Lu, C. J.; Han, B.; Wang, X.; Li, C. X.; Xu, C. B.; Gui, J. G.; Lin, C. H. Giant self-biased magnetoelectric coupling characteristics of three-phase composite with end-bonding structure. Appl. Phys. Lett. 2014, 105, 263502.

34

Huo, Y. N.; Bian, Z. F.; Zhang, X. Y.; Jin, Y.; Zhu, J.; Li, H. X. Highly active TiO2-xNx visible photocatalyst prepared by N-doping in Et3N/EtOH fluid under supercritical conditions. J. Phys. Chem. C 2008, 112, 6546-6550.

35

Liang, M. X.; Bai, X. T.; Yu F.; Ma, J. A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res. 2021, 14, 684-691.

36

Li, Z. L.; Joshi, M. K.; Chen, J. X.; Zhang, Z. M.; Li, Z. Q.; Fang, X. S. Mechanically compatible UV photodetectors based on electrospun free-standing Y3+-doped TiO2 nanofibrous membranes with enhanced flexibility. Adv. Funct. Mater. 2020, 30, 2005291.

37

Akshay, V. R.; Arun, B.; Mukesh, M.; Chanda, A.; Vasundhara, M. Tailoring the NIR range optical absorption, band-gap narrowing and ferromagnetic response in defect modulated TiO2 nanocrystals by varying the annealing conditions. Vacuum 2021, 184, 109955.

38

Wu, M. C.; Huang, W. K.; Lin, T. H.; Lu, Y. J. Photocatalytic hydrogen production and photodegradation of organic dyes of hydrogenated TiO2 nanofibers decorated metal nanoparticles. Appl. Surf. Sci. 2019, 469, 34-43.

39

Xu, Y.; Lin, Q. Y.; Ahmed, R.; Hoglund, E. R.; Zangari, G. Synthesis of TiO2-based nanocomposites by anodizing and hydrogen annealing for efficient photoelectrochemical water oxidation. J. Power Sources 2019, 410-411, 59-68.

40

Wang, C.; Wang, F. X.; Zhao, Y. J.; Li, Y. H.; Yue, Q.; Liu, Y. P.; Liu, Y.; Elzatahry, A. A.; Al-Enizi, A.; Wu, Y. P. et al. Hollow TiO2-x porous microspheres composed of well-crystalline nanocrystals for high- performance lithium-ion batteries. Nano Res. 2016, 9, 165-173.

41

Liu, C.; Lu, H. B.; Zhang, J. N.; Gao, J. Z.; Zhu, G. Q.; Yang, Z. B.; Yin, F.; Wang, C. L. Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sens. Actuators B Chem. 2018, 263, 557-567.

42

Zeng, Q. L.; Wang, X.; Xie, X. F.; Mahmood, A.; Lu, G. H.; Wang, Y.; Sun, J. Band bending of TiO2 induced by O-xylene and acetaldehyde adsorption and its effect on the generation of active radicals. J. Colloid Interface Sci. 2020, 572, 374-383.

43

Solanki, V.; Mishra, I.; Joshi, S. R.; Mishra, P.; Dash, P.; Mishra, N. C.; Kanjilal, D.; Varma, S. Room temperature superparamagnetism in rutile TiO2 quantum dots produced via ECR sputtering. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 365, 82-85.

44

González-Reyes, L.; Hernández-Pérez, I.; Arceo, L. D. B.; Dorantes- Rosales, H.; Arce-Estrada, E.; Suárez-Parra, R.; Cruz-Rivera, J. J. Temperature effects during Ostwald ripening on structural and bandgap properties of TiO2 nanoparticles prepared by sonochemical synthesis. Mater. Sci. Eng. B 2010, 175, 9-13.

45

Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M. et al. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method. J. Phys. Chem. Solids 2014, 75, 182-187.

46

Wu, M. C.; Chen, C. H.; Huang, W. K.; Hsiao, K. C.; Lin, T. H.; Chan, S. H.; Wu, P. Y.; Lu, C. F.; Chang, Y. H.; Lin, T. F. et al. Improved solar-driven photocatalytic performance of highly crystalline hydrogenated TiO2 nanofibers with core-shell structure. Sci. Rep. 2017, 7, 40896.

47

Kraut, E. A.; Grant, R. W.; Waldrop, J. R.; Kowalczyk, S. P. Precise determination of the valence-band edge in X-ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 1980, 44, 1620-1623.

48

Lassaletta, G.; Caballero, A.; Wu, S.; González-Elipe, A. R.; Fernández, A. Photoelectron spectroscopy of metal oxide particles: Size and support effects. Vacuum 1994, 45, 1085-1086.

49

Engqvist, J.; Jansson, U. Initial stages of growth during CVD of W on TiSi2 substrates. Thin Solid Films 1995, 263, 54-64.

50

Shi, C.; Qi, H. J.; Sun, Z.; Qu, K. Q.; Huang, Z. H.; Li, J.; Dong, M. Y.; Guo, Z. H. Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB. J. Mater. Chem. C 2020, 8, 2238-2247.

51

Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021, 14, 1095-1102.

52

Uddin, M. T.; Nicolas, Y.; Olivier, C.; Servant, L.; Toupance, T.; Li, S. Y.; Klein, A.; Jaegermann, W. Improved photocatalytic activity in RuO2-ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Phys. Chem. Chem. Phys. 2015, 17, 5090-5102.

53

Appavu, B.; Thiripuranthagan, S. Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J. Photochem. Photobiol. A Chem. 2017, 340, 146-156.

54

Jia, T. K.; Fu, F.; Yu, D. S.; Cao, J. L.; Sun, G. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance. Appl. Surf. Sci. 2018, 430, 438-447.

55

Miao, J. S.; Wang, C. Avalanche photodetectors based on two- dimensional layered materials. Nano Res. 2021, 14, 1878-1888.

Nano Research
Pages 3423-3430
Cite this article:
Ji T, He S, Ai F, et al. An adjustable multi-color detector based on regulating TiO2 surface adsorption and multi-junction synergy. Nano Research, 2021, 14(10): 3423-3430. https://doi.org/10.1007/s12274-021-3565-y
Topics:

777

Views

10

Crossref

10

Web of Science

6

Scopus

3

CSCD

Altmetrics

Received: 10 March 2021
Revised: 09 April 2021
Accepted: 01 May 2021
Published: 04 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return