AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential

Wenbin Wang1Yang Yang1Yang Zhao1Shuzhe Wang1Xiaomeng Ai2Jiakun Fang2Youwen Liu1( )
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and TechnologyWuhan 430074 China
State Key Lab of Advanced Electromagnetic Engineering and Technology, and School of Electrical and Electronic Engineering Huazhong University of Science and TechnologyWuhan 430074 China
Show Author Information

Graphical Abstract

Abstract

Sulfide compounds provide a type of promising alternative for oxygen evolution reaction (OER) electrocatalysts due to their diversity, intrinsic activities, low-price and earth-abundance. However, the unsmooth mass transport channel, the collapse of the structure and insufficient intrinsic activities limit their potential for OER performance. In respond, the dense Fe-doped Co9S8 nanoparticles encapsulated by S, N co-incorporated carbon nanosheets (Fe-Co9S8@SNC) were proposed and synthesized via fast thermal treatment from ultrathin metal-organic frameworks (MOFs) nanosheets. In designed catalysts, the nanosheet configuration connected by nanoparticles retained rich access for permeation of electrolyte and precipitation of O2 bubbles during OER process. Meanwhile, the outer carbon layer of Co9S8 provided additional catalytic activity while acting as armor to keep the structure stability. At the atomic scale, the doped Fe regulated the local charge density and the d-band center for facilitating desorption of oxygen intermediates. Benefiting from this multi-scale regulation strategy, the Fe-Co9S8@SNC displays an ultralow overpotential of 273 mV at 10 mA·cm-2 and small Tafel slope of 55.8 mV·dec-1, which is even close to the benchmark RuO2 catalyst. This concept could provide valuable insights into the design of other catalysts for OER and beyond.

Electronic Supplementary Material

Download File(s)
12274_2021_3568_MOESM1_ESM.pdf (4.6 MB)

References

1

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia- Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-337.

2

Liu, Y. W.; Xiao, C.; Huang, P. C.; Cheng, M.; Xie, Y. Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 2018, 4, 1263-1283.

3

Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2020, 14, 1533-1540.

4

Yu, J.; Li, B. Q.; Zhao, C. X.; Zhang, Q. Seawater electrolyte-based metal-air batteries: From strategies to applications. Energy Environ. Sci. 2020, 13, 3253-3268.

5

Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400-6408.

6

Butcha, S.; Assavapanumat, S.; Ittisanronnachai, S.; Lapeyre, V.; Wattanakit, C.; Kuhn, A. Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nat. Commun. 2021, 12, 1314.

7

Fukushima, T.; Higashi, M.; Kitano, S.; Sugiyama, T.; Yamauchi, M. Multiscale design for high-performance glycolic acid electro- synthesis cell: Preparation of nanoscale-IrO2-applied Ti anode and optimization of cell assembling. Catal. Today 2020, 351, 12-20.

8

Wang, W. B.; Wen, Q. L.; Liu, Y. W.; Zhai, T. Y. Research progress of surface and interface chemistry regulate two-dimensional materials for electrocatalytic biomass conversion. Acta Chim. Sin. 2020, 78, 1185-1199.

9

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

10

Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941-2946.

11

Zhou, Y.; Sun, S. N.; Wei, C.; Sun, Y. M.; Xi, P. X.; Feng, Z. X.; Xu, Z. J. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv. Mater. 2019, 31, 1902509.

12

Zhang, S. C.; Wang, W. B.; Hu, F. L.; Mi, Y.; Wang, S. Z.; Liu, Y. W.; Ai, X. M.; Fang, J. K.; Li, H. Q.; Zhai, T. Y. 2D CoOOH sheet- encapsulated Ni2P into tubular arrays realizing 1, 000 mA·cm-2- level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 2020, 12, 140.

13

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

14

Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble- metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

15

Xue, H. Y.; Meng, A.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. , in press, DOI: 10.1007/s12274-021-3359-2.

16

Li, C. C.; Liu, Y. W.; Zhuo, Z. W.; Ju, H. X.; Li, D.; Guo, Y. P.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. Local charge distribution engineered by Schottky heterojunctions toward urea electrolysis. Adv. Energy Mater. 2018, 8, 1801775.

17

Zhang, X.; Liu, S. W.; Zang, Y. P.; Liu, R. R.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93-102.

18

Wu, L. L.; Wang, Q. S.; Li, J.; Long, Y.; Liu, Y.; Song, S. Y.; Zhang, H. J. Co9S8 nanoparticles-embedded N/S-codoped carbon nanofibers derived from metal-organic framework-wrapped CdS nanowires for efficient oxygen evolution reaction. Small 2018, 14, 1704035.

19

Yang, J.; Zhu, G. X.; Liu, Y. J.; Xia, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712-4721.

20

Zhu, H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When cubic cobalt sulfide meets layered molybdenum disulfide: A core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 2015, 27, 4752-4759.

21

Wu, Z. S.; Huang, L.; Liu, H.; Li, M.; Wang, H. L. Surface oxidation of transition metal sulfide and phosphide nanomaterials. Nano Res. , in press, DOI: 10.1007/s12274-020-3219-5.

22

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937-1938.

23

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C-N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974-16981.

24

Guo, Y. B.; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice- based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635-1644.

25

Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

26

Tu, Y. C.; Ren, P. J.; Deng, D. H.; Bao, X. H. Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy 2018, 52, 494-500.

27

Wei, P. K.; Hao, Z. W.; Yang, Y.; Liu, M. Y.; Zhang, H. J.; Gao, M. R.; Yu, S. H. Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Res. 2020, 13, 3292-3298.

28

Zhang, M.; Guan, J.; Tu, Y. C.; Chen, S. M.; Wang, Y.; Wang, S.; Yu, L.; Ma, C.; Deng, D. H.; Bao, X. H. Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst. Energy Environ. Sci. 2020, 13, 119-126.

29

Yu, L.; Deng, D. H.; Bao, X. H. Chain mail for catalysts. Angew. Chem. , Int. Ed. 2020, 59, 15294-15297.

30

Wang, Z. P.; Lin, Z. P.; Deng, J.; Shen, S. J.; Meng, F. Q.; Zhang, J. T.; Zhang, Q. H.; Zhong, W. W.; Gu, L. Elevating the d-band center of six-coordinated octahedrons in Co9S8 through Fe-incorporated topochemical deintercalation. Adv. Energy Mater. 2020, 11, 2003023.

31

Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem. , Int. Ed. 2018, 57, 5076-5080.

32

Tong, M. Y.; Liu, S. W.; Zhang, X.; Wu, T. X.; Zhang, H. M.; Wang, G. Z.; Zhang, Y. X.; Zhu, X. G.; Zhao, H. J. Two-dimensional CoNi nanoparticles@S, N-doped carbon composites derived from S, N-containing Co/Ni MOFs for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 9873-9881.

33

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

34

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413-7421.

35

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

36

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

37

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

38

Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; García de Arquer, F. P.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149-154.

39

Jia, H. P.; Li, W.; Ju, Z. F.; Zhang, J. Synthesis, structure and magnetism of metal-organic framework materials with doubly pillared layers. Eur. J. Inorg. Chem. 2006, 2006, 4264-4270.

40

Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Wang, X. L.; Lu, X. H.; Xia, X. H.; Tu, J. P. Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 2018, 5, 1700772.

41

Qiu, B. C.; Cai, L. J.; Wang, Y.; Guo, X. Y.; Ma, S. N.; Zhu, Y.; Tsang, Y. H.; Zheng, Z. J.; Zheng, R. K.; Chai, Y. Phosphorus incorporation into Co9S8 nanocages for highly efficient oxygen evolution catalysis. Small 2019, 15, 1904507.

42

Chang, S. H.; Lu, M. D.; Tung, Y. L.; Tuan, H. Y. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells. ACS Nano 2013, 7, 9443-9451.

43

Jia, N.; Liu, J.; Gao, Y. S.; Chen, P.; Chen, X. B.; An, Z. W.; Li, X. F.; Chen, Y. Graphene-encapsulated Co9S8 nanoparticles on N, S-codoped carbon nanotubes: An efficient bifunctional oxygen electrocatalyst. ChemSusChem 2019, 12, 3390-3400.

44

Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186-1195.

45

Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322-333.

46

Huang, S. C.; Meng, Y. Y.; He, S. M.; Goswami, A.; Wu, Q. L.; Li, J. H.; Tong, S. F.; Asefa, T.; Wu, M. M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1606585.

47

Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460-466.

48

Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. H. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36-45.

49

Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.

50

Dai, J. L.; Zhao, D. K.; Sun, W. M.; Zhu, X. J.; Ma, L. J.; Wu, Z. X.; Yang, C. H.; Cui, Z. M.; Li, L. G.; Chen, S. W. Cu(Ⅱ) ions induced structural transformation of cobalt selenides for remarkable enhancement in oxygen/hydrogen electrocatalysis. ACS Catal. 2019, 9, 10761-10772.

51

Zheng, X. B.; Cui, P. X.; Qian, Y. M.; Zhao, G. Q.; Zheng, X. S.; Xu, X.; Cheng, Z. X.; Liu, Y. Y.; Dou, S. X.; Sun, W. P. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting. Angew. Chem., Int. Ed. 2020, 59, 14533-14540.

52

Zhang, K.; Zhang, G.; Qu, J. H.; Liu, H. J. Zinc substitution-induced subtle lattice distortion mediates the active center of cobalt diselenide electrocatalysts for enhanced oxygen evolution. Small 2020, 16, 1907001.

53

Zhao, J. Y.; Wang, R.; Wang, S.; Lv, Y. R.; Xu, H.; Zang, S. Q. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J. Mater. Chem. A 2019, 7, 7389-7395.

54

Gui, Y. H.; Liu, X.; Dou, Y. H.; Zhang, L.; Al-Mamun, M.; Jiang, L. X.; Yin, H. J.; He, C. T.; Zhao, H. J. Manipulating the assembled structure of atomically thin CoSe2 nanomaterials for enhanced water oxidation catalysis. Nano Energy 2019, 57, 371-378.

55

Fang, G. Z.; Wang, Q. C.; Zhou, J.; Lei, Y. P.; Chen, Z. X.; Wang, Z. Q.; Pan, A. Q.; Liang, S. Q. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 2019, 13, 5635-5645.

56

You, H.; Zhuo, Z. W.; Lu, X. F.; Liu, Y. W.; Guo, Y. B.; Wang, W. B.; Yang, H.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. 1T′-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 2019, 1, 396-406.

57

Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M=Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411-419.

58

Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

59

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal- organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

60

Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.

61

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243-8250.

62

Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.

63

Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. App. Catal. B Environ. 2020, 263, 118345.

64

Hao, P.; Xin, Y.; Wang, Q.; Li, L. Y.; Zhao, Z. H.; Wen, H. G.; Xie, J. F.; Cui, G. W.; Tang, B. Lanthanum-incorporated β-Ni(OH)2 nanoarrays for robust urea electro-oxidation. Chem. Commun. 2021, 57, 2029-2032.

Nano Research
Pages 872-880
Cite this article:
Wang W, Yang Y, Zhao Y, et al. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Research, 2022, 15(2): 872-880. https://doi.org/10.1007/s12274-021-3568-8
Topics:

741

Views

35

Crossref

37

Web of Science

33

Scopus

3

CSCD

Altmetrics

Received: 23 March 2021
Revised: 27 April 2021
Accepted: 02 May 2021
Published: 16 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return