AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

The "gene" of reversible phase transformation of phase change materials: Octahedral motif

Zhitang Song1,2( )Ruobing Wang1,2Yuan Xue1,2Sannian Song1,2
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System and Information TechnologyChinese Academy of SciencesShanghai200050China
Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Nonvolatile phase change random access memory (PCRAM) is regarded as one of promising candidates for next-generation memory in the era of Big Data. The phase transition mechanism of phase change materials is the key scientific issue to be addressed for phase change memory. Moreover, obtaining homogeneous phase change materials with high speed, low power consumption, long life and good thermal stability is still the ultimate challenge for high-density three-dimensional (3D) PCRAM. In this paper, starting from the octahedral structure motifs (octahedrons) which are considered as the "gene" of phase change materials, a new view on the phase transition mechanism is proposed. Based on this mechanism, a homogeneous phase change material is developed by constructing three matched octahedrons, which achieved an overall improvement in performance, showing 180 ℃ ten-year data retention, 6 ns SET speed, one order of magnitude longer life time and 75% reduced power consumption compared with traditional Ge2Sb2Te5 (GST) devices. It is of great significance to use it in 3D PCRAM chip and multi-level brain- inspired computing chip in the future.

References

1
Rethink Data: Put more of your business data to work-from edge to cloud, a Seagate report [Online]. https://www.seagate.com/our-story/rethink-data/. (accessed June 1, 2020)
2

Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.

3

Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832.

4

Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 2005, 4, 347–352.

5

Kolobov, A. V.; Fons, P.; Frenkel, A. I.; Ankudinov, A. L.; Tominaga, J.; Uruga, T. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 2004, 3, 703–708.

6

Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

7

Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 2010, 5, 148–153.

8

Liu, S.; Lu, N. D.; Zhao, X. L.; Xu, H.; Banerjee, W.; Lv, H. B.; Long, S. B.; Li, Q. J.; Liu, Q.; Liu, M. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 2016, 28, 10623–10629.

9

Kent, A. D.; Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 2015, 10, 187–191.

10

Mangin, S.; Ravelosona, D.; Katine, J. A.; Carey, M. J.; Terris B. D.; Fullerton E. E. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 2006, 5, 210–215.

11

Zhang, S.; Zhao, Y. G.; Li, P. S.; Yang, J. J.; Rizwan, S.; Zhang, J. X.; Seidel, J.; Qu, T. L.; Yang, Y. J.; Luo, Z. L. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 2012, 108, 137203.

12

Atwood, G. Phase-change materials for electronic memories. Science 2008, 321, 210–211.

13

Wuttig, M.; Lüsebrink, D.; Wamwangi, D.; Wełnic, W.; Gilleßen, M.; Dronskowski, R. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 2006, 6, 122–128.

14

Raoux, S.; Wełnic, W.; Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 2009, 110, 240–267.

15
Hruska, J. Intel, Micron Reveal Xpoint, a New Memory Architecture That Could Outclass DDR4 and NAND [Online]. https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand. (accessed March 1, 2021)
16
Hruska, J. Intel Announces New Optane DC Persistent Memory [Online]. https://www.extremetech.com/extreme/270270-intel-announces-new-optane-dc-persistent-memory. (accessed March 1, 2021)
17

Fong, S. W.; Neumann, C. M.; Wong, H. S. Phase-change memory— towards a storage-class memory. IEEE Trans. Electron Dev. 2017, 64, 4374–4385.

18

Siegrist, T.; Jost, P.; Volker, H.; Woda, M.; Merkelbach, P.; Schlockermann, C.; Wuttig, M. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 2011, 10, 202–208.

19

Zhang, W.; Thiess, A.; Zalden, P.; Zeller, R.; Dederichs, P. H.; Raty, J. Y.; Wuttig, M.; Blügel, S.; Mazzarello, R. Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 2012, 11, 952–956.

20

Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653–658.

21

Wang, J. J.; Xu, Y. Z.; Mazzarello, R.; Wuttig, M.; Zhang, W. A review on disorder-driven metal–insulator transition in crystalline vacancy-rich GeSbTe Phase-change materials. Materials 2017, 10, 862.

22

Sa, B. S.; Zhou, J.; Sun, Z. M.; Tominaga, J.; Ahuja, R. Topological insulating in GeTe/Sb2Te3 phase-change superlattice. Phys. Rev. Lett. 2012, 109, 096802.

23

Wang, Y. C.; Chen, X. G.; Cheng, Y.; Zhou, X. L.; Lv, S. L.; Chen, Y. F.; Wang, Y. Q.; Zhou, M.; Chen, H. P.; Zhang, Y. Y. et al. RESET distribution improvement of phase change memory: The impact of pre-programming. IEEE Electron Dev. Lett. 2014, 35, 536–538.

24

Scott, E. A.; Ziade, E.; Saltonstall, C. B.; McDonald, A. E.; Rodriguez, M. A.; Hopkins, P. E.; Beechem, T. E.; Adams D. P. Thermal conductivity of (Ge2Sb2Te5)1-xCx phase change films. J. Appl. Phys. 2020, 128, 155106.

25
Hubert, Q.; Jahan, C.; Toffoli, A.; Navarro, G.; Chandrashekar, S.; Noé, P.; Blachier, D.; Sousa, V.; Perniola, L.; Nodin, J. F. et al. Lowering the reset current and power consumption of Phase- Change Memories with carbon-doped Ge2Sb2Te5. In Proceedings of the 2012 4th IEEE International Memory Workshop, Milan, Italy, 2012.https://doi.org/10.1109/IMW.2012.6213683
26

Shelby, R. M.; Raoux, S. Crystallization dynamics of nitrogen-doped Ge2Sb2Te5. J. Appl. Phys. 2009, 105, 104902.

27
Cheng, H. Y.; Wu, J. Y.; Cheek, R.; Raoux, S.; BrightSky, M.; Garbin, D.; Kim, S.; Hsu, T. H.; Zhu, Y.; Lai, E. K. et al. A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTez phase change material. In Proceedings of 2012 International Electron Devices Meeting, San Francisco, USA, 2012, pp 31.1. 1–31.1. 4.https://doi.org/10.1109/IEDM.2012.6479141
28
Matsuzaki, N.; Kurotsuchi, K.; Matsui, Y.; Tonomura, O.; Yamamoto, N.; Fujisaki, Y.; Kitai, N.; Takemura, R.; Osada, K.; Hanzawa, S. et al. Oxygen-doped GeSbTe phase-change memory cells featuring 1.5-V/100-µA standard 0.13-µm CMOS operations. In Proceedings of 2005 IEEE International Electron Devices Meeting, Washington, USA, 2005.
29

Golovchak, R.; Choi, Y. G.; Kozyukhin, S.; Chigirinsky, Y.; Kovalskiy, A.; Xiong-Skiba, P.; Trimble, J.; Pafchek, R.; Jain, H. Oxygen incorporation into GST phase-change memory matrix. Appl. Surf. Sci. 2015, 332, 533–541.

30

Feng, J.; Zhang, Y.; Qiao, B. W.; Lai, Y. F.; Lin, Y. Y.; Cai, B. C.; Tang, T. A.; Chen, B. Si doping in Ge2Sb2Te5 film to reduce the writing current of phase change memory. Appl. Phys. A 2007, 87, 57–62.

31

Ling, Y.; Lin, Y. Y.; Qiao, B. W.; Lai, Y. F.; Feng, J.; Tang, T. G.; Cai, B. C.; Chen, B. Effects of Si doping on phase transition of Ge2Sb2Te5 films by in situ resistance measurements. Jpn. J. Appl. Phys. 2006, 45, L349–L351.

32

Wang, K.; Wamwangi, D.; Ziegler, S.; Steimer, C.; Wuttig, M. Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5. J. Appl. Phys. 2004, 96, 5557–5562.

33

Kim, K.; Park, J. C.; Chung, J. G.; Song, S. A.; Jung, M. C.; Lee, Y. M.; Shin, H. J.; Kuh, B.; Ha, Y.; Noh, J. S. Observation of molecular nitrogen in N-doped Ge2Sb2Te5. Appl. Phys. Lett. 2006, 89, 243520.

34

Salinga, M.; Kersting, B.; Ronneberger, I.; Jonnalagadda, V. P.; Vu, X. T.; Le Gallo, M.; Giannopoulos, I.; Cojocaru-Mirédin, O.; Mazzarello, R.; Sebastian, A. Monatomic phase change memory. Nat. Mater. 2018, 17, 681–685.

35

Zhang, W.; Ma, E. Single-element glass to record data. Nat. Mater. 2018, 17, 654–655.

36

Xue, Y.; Cheng, Y.; Zheng, Y. H.; Yan, S.; Song, W. X.; Lv, S. L.; Song, S. N.; Song, Z. T. Phase change memory based on Ta-Sb-Te alloy–Towards a universal memory. Mater. Today Phys. 2020, 15, 100266.

37

Liu, B.; Liu, W. L.; Li, Z.; Li, K. Q.; Wu, L. C.; Zhou, J.; Song, Z. T.; Sun, Z. M. Y-doped Sb2Te3 phase-change materials: Toward a universal memory. ACS Appl. Mater. Interfaces 2020, 12, 20672– 20679.

38

Xia, M. J.; Zhu, M.; Wang, Y. C.; Song, Z. T.; Rao, F.; Wu, L. C.; Cheng, Y.; Song, S. N. Ti-Sb-Te alloy: A candidate for fast and long-life phase-change memory. ACS Appl. Mater. Interfaces 2015, 7, 7627–7634.

39

Xue, Y.; Yan, S.; Lv, S. L.; Song, S. L.; Song, Z. T. Ta-doped Sb2Te allows ultrafast phase-change memory with excellent high-temperature operation characteristics. Nano-Micro Lett. 2021, 13, 33.

40

Bruns, G.; Merkelbach, P.; Schlockermann, C.; Salinga, M.; Wuttig, M.; Happ, T. D.; Philipp, J. B.; Kund M. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 2009, 95, 043108.

41

Perniola, L.; Sousa, V.; Fantini, A.; Arbaoui, E.; Bastard, A.; Armand, M.; Fargeix, A.; Jahan, C.; Nodin, J. F.; Persico, A. et al. Electrical behavior of phase-change memory cells based on GeTe. IEEE Electr. Device Lett. 2010, 31, 488–490.

42
Jeyasingh, R. G. D.; Caldwell, M. A.; Milliron, D. J.; Wong, H. S. P. First demonstration of phase change memory device using solution processed GeTe nanoparticles. In Proceedings of 2011 Proceedings of the European Solid-State Device Research Conference, Helsinki, Finland, 2011, pp 99–102.https://doi.org/10.1109/ESSDERC.2011.6044225
43

Navarro, G.; Sousa, V.; Persico, A.; Pashkov, N.; Toffoli, A.; Bastien, J. C.; Perniola, L.; Maitrejean, S.; Roule, A.; Zuliani, P. et al. Material engineering of GexTe100-x compounds to improve phase-change memory performances. Solid-State Electron. 2013, 89, 93–100.

44

Liu, C. M.; Yuan, Y. F.; Zhang, X. T.; Su, J.; Song, X. X.; Ling, H.; Liao, Y. J.; Zhang, H.; Zheng, Y. X.; Li, J. Ta doping effect on structural and optical properties of InTe thin films. Nanomaterials 2020, 10, 1887.

45

Caravati, S.; Bernasconi, M.; Parrinello, M. First-principles study of liquid and amorphous Sb2Te3. Phys. Rev. B 2010, 81, 014201.

46

Rao, F.; Ding, K. Y.; Zhou, Y. X.; Zheng, Y. H.; Xia, M. J.; Lv, S. L.; Song, Z. T.; Feng, S. L.; Ronneberger, I.; Mazzarello, R. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 2017, 358, 1423–1427.

47

Zheng, Y. H.; Xia, M. J.; Cheng, Y.; Rao, F.; Ding, K. Y.; Liu, W. L.; Jia, Y.; Song, Z. T.; Feng, S. L. Direct observation of metastable face-centered cubic Sb2Te3 crystal. Nano Res. 2016, 9, 3453–3462.

48

Kolobov, A. V.; Fons, P.; Tominaga, J.; Ovshinsky, S. R. Vacancy- mediated three-center four-electron bonds in GeTe-Sb2Te3 phase-change memory alloys. Phys. Rev. B 2013, 87, 165206.

49

Chen, X.; Liu, X. Q.; Cheng, Y.; Song, Z. T. The impact of vacancies on the stability of cubic phases in Sb-Te binary compounds. NPG Asia Mater. 2019, 11, 40.

50

Weber, H.; Schumacher, M.; Jóvári, P.; Tsuchiya, Y.; Skrotzki, W.; Mazzarello, R.; Kaban, I. Experimental and ab initio molecular dynamics study of the structure and physical properties of liquid GeTe. Phys. Rev. B 2017, 96, 054204.

51

Mazzarello, R.; Caravati, S.; Angioletti-Uberti, S.; Bernasconi, M.; Parrinello, M. Signature of tetrahedral ge in the Raman spectrum of amorphous phase-change materials. Phys. Rev. Lett. 2010, 104, 085503.

52

Polatoglou, H. M.; Theodorou, G.; Economou, N. A. Bonding in cubic and rhombohedral GeTe. J. Phys. C Solid State Phys. 1983, 16, 817–827.

53

Polking, M. J.; Han, M. G.; Yourdkhani, A.; Petkov, V.; Kisielowski, C. F.; Volkov, V. V.; Zhu, Y. M.; Caruntu, G.; Paul Alivisatos, A.; Ramesh, R. Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 2012, 11, 700–709.

54

Kolobov, A. V.; Tominaga, J.; Fons, P.; Uruga, T. Local structure of crystallized GeTe films. Appl. Phys. Lett. 2003, 82, 382–384.

55

Song, Z. T.; Song, S. N.; Zhu, M.; Wu, L. C.; Ren, K.; Song, W. X.; Feng, S. L. From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage. Sci. China Inf. Sci. 2018, 61, 081302.

56

Chen, M.; Rubin, K. A.; Barton, R. W. Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 1986, 49, 502–504.

57

Yamada, N. Erasable phase-change optical materials. MRS Bull. 1996, 21, 48–50.

58

Matsunaga, T.; Yamada, N.; Kubota, Y. Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. Acta Crystallogr. 2004, 60B, 685–691.

59

Zheng, Y. H.; Wang, Y.; Xin, T. J.; Cheng, Y.; Huang, R.; Liu, P.; Luo, M.; Zhang, Z. L.; Lv, S. L.; Song, Z. T. et al. Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5. Commun. Chem. 2019, 2, 13.

60

Park, I. M.; Jung, J. K.; Ryu, S. O.; Choi, K. J.; Yu, B. G.; Park, Y. B.; Han, S. M.; Joo, Y. C. Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory. Thin Solid Films 2008, 517, 848–852.

61

Njoroge, W. K.; Wöltgens, H. W.; Wuttig, M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A 2002, 20, 230–233.

62

Wang, Y.; Zheng, Y. H.; Liu, G. Y.; Li, T.; Guo, T. Q.; Cheng, Y.; Lv, S. L.; Song, S. N.; Ren, K.; Song, Z. T. Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory. Appl. Phys. Lett. 2018, 112, 133104.

Nano Research
Pages 765-772
Cite this article:
Song Z, Wang R, Xue Y, et al. The "gene" of reversible phase transformation of phase change materials: Octahedral motif. Nano Research, 2022, 15(2): 765-772. https://doi.org/10.1007/s12274-021-3570-1
Topics:

742

Views

27

Crossref

26

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 15 March 2021
Revised: 29 April 2021
Accepted: 03 May 2021
Published: 28 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return