AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition

Yu Yang1Erming Feng1Hengyue Li1Zichao Shen2Wanrong Liu1Jingbo Guo3Qun Luo3Jidong Zhang4Guanghao Lu2( )Changqi Ma3Junliang Yang1( )
Hunan Key Laboratory for Super-microstructure and Ultrafast ProcessSchool of Physics and Electronics, Central South UniversityChangsha410083China
Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
Printable Electronics Research CenterSuzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of SciencesSuzhou215123China
Changchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
Show Author Information

Graphical Abstract

Abstract

Layer-by-layer (LbL) strategy has been developed to form bulk heterojunction (BHJ) structure for processing efficient organic solar cells (OSCs). Herein, LbL slot-die coating with twin boiling point solvents (TBPS) strategy was developed to fabricate highly efficient OSCs, which matches with large-scale, high throughput roll-to-roll (R2R) industrialized mass process. The TBPS strategy could produce high-quality thin film without any additive, leading to the optimized vertical phase separation with interpenetrating nanostructures, as well as the enhanced charge transport and extraction. Thus, the power conversion efficiency up to 14.42% was achieved for [(2, 6-(4, 8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo [1, 2-b: 4, 5-b']dithiophene))-alt-(5, 5-(1', 3'-di-2-thienyl-5', 7'- bis(2-ethylhexyl)benzo[1', 2'-c: 4', 5'-c']dithiophene-4, 8-dione)]: 2, 2'-((2Z, 2'Z)-((12, 13-bis(2-ethylhexyl)-3, 9-diundecyl-12, 13-dihydro-[1,2,5]thiadiazolo[3, 4-e]thieno[2'', 3'': 4'', 5'']thieno[2', 3': 4, 5]pyrrolo[3, 2-g]thieno[2', 3': 4, 5]thieno[3, 2-b]indole-2, 10-diyl)bis(methanylylidene)) bis(5, 6-difluoro-3-oxo-2, 3-dihydro-1H-indene-2, 1-diylidene))dimalononitrile (PM6:Y6) OSCs fabricated via sequentially LbL slot-die coating using the TBPS strategy under ambient condition. The research provides a potential route for industrialized production of high-efficiency and large-area OSC devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3576_MOESM1_ESM.pdf (1.3 MB)

References

1

Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789-1791.

2

Yang, J. L.; Vak, D.; Clark, N.; Subbiah, J.; Wong, W. W. H.; Jones, D. J.; Watkins, S. E.; Wilson, G. Organic photovoltaic modules fabricated by an industrial gravure printing proofer. Sol. Energy Mater. Sol. Cells 2013, 109, 47-55.

3

Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222-225.

4

Huang, W. C.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv. Mater. 2018, 30, 1705706.

5

Naveed, H. B.; Ma, W. Miscibility-driven optimization of nanostructures in ternary organic solar cells using non-fullerene acceptors. Joule 2018, 2, 621-641.

6

He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power- conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591-595.

7

Zhang, L.; Xu, X. B.; Lin, B. J.; Zhao, H.; Li, T. F.; Xin, J. M.; Bi, Z. Z.; Qiu, G. X.; Guo, S. W.; Zhou, K. et al. Achieving balanced crystallinity of donor and acceptor by combining blade-coating and ternary strategies in organic solar cells. Adv. Mater. 2018, 30, 1805041.

8

Aryal, U. K.; Reddy, S. S.; Kranthiraja, K.; Kim, J.; Cho, W.; Song, M.; Jin, S. H. Nonhalogenated solvent-processed fullerene-free ambient stable organic solar cells: Impact of molecular weight of new π-conjugated donor polymer on efficiency. ACS Appl. Energy Mater. 2019, 2, 4159-4166.

9

Xiao, Z.; Yang, S. F.; Yang, Z.; Yang, J. L.; Yip, H. L.; Zhang, F. J.; He, F.; Wang, T.; Wang, J. Z.; Yuan, Y. B. et al. Carbon-oxygen- bridged ladder-type building blocks for highly efficient nonfullerene acceptors. Adv. Mater. 2019, 31, 1804790.

10

Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140-1151.

11

Liu, Y. H.; Zhao, J. B.; Li, Z. K.; Mu, C.; Ma, W.; Hu, H. W.; Jiang, K.; Lin, H. R.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293.

12

Wang, T.; Qin, J. Q.; Xiao, Z.; Meng, X. Y.; Zuo, C. T.; Yang, B.; Tan, H. R.; Yang, J. L.; Yang, S. F.; Sun, K. et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci. Bull. 2020, 65, 179-181.

13

Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272-275.

14

Guo, J.; Min, J. A cost analysis of fully solution-processed ITO-free organic solar modules. Adv. Energy Mater. 2019, 9, 1802521.

15

Xiong, J.; Yang, B. C.; Yuan, J.; Fan, L.; Hu, X.; Xie, H. P.; Lyu, L.; Cui, R. L.; Zou, Y. P.; Zhou, C. H. et al. Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer. Org. Electron. 2015, 17, 253- 261.

16

Peng, Y. Y.; Cheng, Y. D.; Wang, C. H.; Zhang, C. J.; Xia, H. Y.; Huang, K. Q.; Tong, S. C.; Hao, X. T.; Yang, J. L. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Org. Electron. 2018, 58, 153-158.

17

Wu, H.; Zhang, C. J.; Ding, K. X.; Wang, L. J.; Gao, Y. L.; Yang, J. L. Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition. Org. Electron. 2017, 45, 302-307.

18

Zhang, C. J.; Luo, Q.; Wu, H.; Li, H. Y.; Lai, J. Q.; Ji, G. Q.; Yan, L. P.; Wang, X. F.; Zhang, D.; Lin, J. et al. Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells. Org. Electron. 2017, 45, 190-197.

19

Lin, Y. B.; Jin, Y. Z.; Dong, S.; Zheng, W. H.; Yang, J. Y.; Liu, A. L.; Liu, F.; Jiang, Y. F.; Russell, T. P.; Zhang, F. L. et al. Printed nonfullerene organic solar cells with the highest efficiency of 9.5%. Adv. Energy Mater. 2018, 8, 1701942.

20

Meng, X. C.; Zhang, L.; Xie, Y. P.; Hu, X. T.; Xing, Z.; Huang, Z. Q.; Liu, C.; Tan, L. C.; Zhou, W. H.; Sun, Y. M. et al. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater. 2019, 31, 1903649.

21

Liu, F.; Ferdous, S.; Schaible, E.; Hexemer, A.; Church, M.; Ding, X. D.; Wang, C.; Russell, T. P. Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. Adv. Mater. 2015, 27, 886-891.

22

Hu, Q.; Wu, H.; Sun, J.; Yan, D. H.; Gao, Y. L.; Yang, J. L. Large- area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 2016, 8, 5350-5357.

23

Lee, J.; Seo, Y. H.; Kwon, S. N.; Kim, D. H.; Jang, S.; Jung, H.; Lee, Y.; Weerasinghe, H.; Kim, T.; Kim, J. Y. et al. Slot-die and roll-to- roll processed single junction organic photovoltaic cells with the highest efficiency. Adv. Energy Mater. 2019, 9, 1901805.

24

Zhao, H.; Naveed, H. B.; Lin, B. J.; Zhou, X. B.; Yuan, J.; Zhou, K.; Wu, H. B.; Guo, R. J.; Scheel, M. A.; Chumakov, A. et al. Hot hydrocarbon-solvent slot-die coating enables high-efficiency organic solar cells with temperature-dependent aggregation behavior. Adv. Mater. 2020, 39, 2002302.

25

Yan, Y.; Liu, X.; Wang, T. Conjugated-polymer blends for organic photovoltaics: Rational control of vertical stratification for high performance. Adv. Mater. 2017, 29, 1601674.

26

Chen, J. Y.; Bi, Z. Z.; Xu, X. B.; Zhang, Q. Q.; Yang, S. C.; Guo, S. W.; Yan, H. P.; You, W.; Ma, W. Fine optimization of morphology evolution kinetics with binary additives for efficient non-fullerene organic solar cells. Adv. Sci. 2019, 6, 1801560.

27

Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim, J. H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253-260.

28

Sun, R.; Guo, J.; Sun, C. K.; Wang, T.; Luo, Z. H.; Zhang, Z. H.; Jiao, X. C.; Tang, W. H.; Yang, C. L.; Li, Y. F. et al. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 2019, 12, 384-395.

29

Cui, Y.; Zhang, S. Q.; Liang, N. N.; Kong, J. Y.; Yang, C. Y.; Yao, H. F.; Ma, L. J.; Hou, J. H. Toward efficient polymer solar cells processed by a solution-processed layer-by-layer approach. Adv. Mater. 2018, 30, 1802499.

30

Dong, S.; Zhang, K.; Xie, B. M.; Xiao, J. Y.; Yip, H. L.; Yan, H.; Huang, F.; Cao, Y. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv. Energy Mater. 2019, 9, 1802832.

31

Sun, R.; Guo, J.; Wu, Q.; Zhang, Z. H.; Yang, W. Y.; Guo, J.; Shi, M. M.; Zhang, Y. H.; Kahmann, S.; Ye, L. et al. A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: Rational control of vertical stratification for high performance. Energy Environ. Sci. 2019, 12, 3118-3132.

32

Ye, L.; Xiong, Y.; Chen, Z.; Zhang, Q. Q.; Fei, Z. P.; Henry, R.; Heeney, M.; O'Connor, B. T.; You, W.; Ade, H. Sequential deposition of organic films with eco-compatible solvents improves performance and enables over 12%-efficiency nonfullerene solar cells. Adv. Mater. 2019, 31, 1808153.

33

Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B. B.; Luo, Z. H.; Yang, W. Y.; Hu, Z. C.; Guo, J. et al. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 2020, 4, 407-419.

34

Fu, H. T.; Gao, W.; Li, Y. X.; Lin, F.; Wu, X.; Son, J. H.; Luo, J. D.; Woo, H. Y.; Zhu, Z. L.; Jen, A. K. Y. A generally applicable approach using sequential deposition to enable highly efficient organic solar cells. Small Methods 2020, 4, 2000687.

35

Zhan, L. L.; Li, S. X.; Xia, X. X.; Li, Y. K.; Lu, X. H.; Zuo, L. J.; Shi, M. M.; Chen, H. Z. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv. Mater. 2021, 33, 2007231.

36

Li, H. Y.; Huang, K. Q.; Dong, Y. N.; Guo, X. T.; Yang, Y.; Luo, Q.; Ma, C. Q.; Li, D. F.; Lu, G. H.; Xiong, J. et al. Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition. Appl. Phys. Lett. 2020, 117, 133301.

37

He, S.; Shen, Z. C.; Yu, J. D.; Guan, H. L.; Lu, G. H.; Xiao, T.; Yang, S. T.; Zou, Y. P.; Bu, L. J. Vertical miscibility of bulk heterojunction films contributes to high photovoltaic performance. Adv. Mater. Interfaces 2020, 7, 2000577.

38

Shi, J.; Wu, D.; Zheng, X. M.; Xie, D. D.; Song, F.; Zhang, X. A.; Jiang, J.; Yuan, X. M.; Gao, Y. L.; Huang, H. From MoO2@MoS2 core-shell nanorods to MoS2 nanobelts. Phys. Status Solidi B 2018, 255, 1800254.

39

Xie, H. P.; Huang, H.; Cao, N. T.; Zhou, C. H.; Niu, D. M.; Gao, Y. L. Effects of annealing on structure and composition of LSMO thin films. Phys. B Condens. Matter 2015, 477, 14-19.

40

Xie, Q. L.; Zheng, X. M.; Wu, D.; Chen, X. L.; Shi, J.; Han, X. T.; Zhang, X. A.; Peng, G.; Gao, Y. L.; Huang, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett. 2017, 111, 093505.

41

Ma, L. J.; Xu, Y. F.; Zu, Y. F.; Liao, Q.; Xu, B. W.; An, C. B.; Zhang, S. Q.; Hou, J. H. A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Sci. China Chem. 2020, 63, 21-27.

42

Wei, J. F.; Zhang, C. J.; Ji, G. Q.; Han, Y. F.; Ismail, I.; Li, H. Y.; Luo, Q.; Yang, J. L.; Ma, C. Q. Roll-to-roll printed stable and thickness-independent ZnO: PEI composite electron transport layer for inverted organic solar cells. Sol. Energy 2019, 193, 102-110.

43

Bu, L. J.; Gao, S.; Wang, W. C.; Zhou, L.; Feng, S.; Chen, X.; Yu, D. M.; Li, S. T.; Lu, G. H. Film-depth-dependent light absorption and charge transport for polymer electronics: A case study on semiconductor/insulator blends by plasma etching. Adv. Energy Mater. 2016, 2, 1600359.

Nano Research
Pages 4236-4242
Cite this article:
Yang Y, Feng E, Li H, et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Research, 2021, 14(11): 4236-4242. https://doi.org/10.1007/s12274-021-3576-8
Topics:

862

Views

36

Crossref

37

Web of Science

38

Scopus

6

CSCD

Altmetrics

Received: 13 March 2021
Revised: 22 April 2021
Accepted: 05 May 2021
Published: 13 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return