Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Flexible power sources featuring high-performance, prominent flexibility and raised safety have received mounting attention in the area of wearable electronic devices. However, many great challenges remain to be overcome, notably the design and fabrication of flexible electrodes with excellent electrochemical performance and matching them with safe and reliable electrolytes. Herein, a facile approach for preparing flexible electrodes, which employs carbon cloth derived from commercial cotton cloth as the substrate of cathode and a flexible anode, is proposed and investigated. The promising cathode (NVPOF@FCC) with high conductivity and outstanding flexibility is prepared by efficiently coating Na3V2(PO4)2O2F (NVPOF) on flexible carbon cloth (FCC), which exhibits remarkable electrochemical performance and the significantly improved reaction kinetics. More importantly, a novel flexible quasi-solid-state sodium-ion full battery (QSFB) is feasibly assembled by sandwiching a P(VDF-HFP)-NaClO4 gel-polymer electrolyte film between the advanced NVPOF@FCC cathode and FCC anode. And the QSFBs are further evaluated in flexible pouch cells, which not only demonstrates excellent energy-storage performance in aspect of great cycling stability and high-rate capability, but also impressive flexibility and safety. This work offers a feasible and effective strategy for the design of flexible electrodes, paving the way for the progression of practical and sustainable flexible batteries.
Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.
Mishra, K.; Yadav, N.; Hashmi, S. A. Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. J. Mater. Chem. A 2020, 8, 22507-22543.
Nishide, H.; Oyaizu, K. Toward flexible batteries. Science 2008, 319, 737-738.
Dai, C. L.; Sun, G. Q.; Hu, L. Y.; Xiao, Y. K.; Zhang, Z. P.; Qu, L. T. Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2020, 2, 509-526.
Guo, J. Z.; Gu, Z. Y.; Zhao, X. X.; Wang, M. Y.; Yang, X.; Yang, Y.; Li, W. H.; Wu, X. L. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode. Adv. Energy Mater. 2019, 9, 1902056.
Zhou, D.; Yang, T. T.; Yang, J. Q.; Fan, L. Z. A flexible self-charging sodium-ion full battery for self-powered wearable electronics. J. Mater. Chem. A 2020, 8, 13267-13276.
Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989.
Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307-1338.
Zhao, C. L.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. Flexible Na batteries. InfoMat 2020, 2, 126-138.
Qiu, R. Y.; Fei, R. X.; Guo, J. Z.; Wang, R.; He, B. B.; Gong, Y. S.; Wu, X. L.; Wang, H. W. Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge. J. Power Sources 2020, 466, 228249.
Wang, C.; Wang, X. F.; Lin, C. F.; Zhao, X. S. Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries. Chem. Eng. J. 2020, 386, 123981.
Ni, Q.; Bai, Y.; Guo, S. N.; Ren, H. X.; Chen, G. H.; Wang, Z. H.; Wu, F.; Wu, C. Carbon nanofiber elastically confined nanoflowers: A highly efficient design for molybdenum disulfide-based flexible anodes toward fast sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 5183-5192.
Shi, H. M.; Wen, G. L.; Nie, Y.; Zhang, G. H.; Duan, H. G. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale 2020, 12, 5261-5285.
Zhao, Y. F.; Guo, J. C. Development of flexible Li-ion batteries for flexible electronics. InfoMat 2020, 2, 866-878.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529-3614.
Dou, B. T.; Yan, J.; Chen, Q.; Han, X. G.; Feng, Q. M.; Miao, X. M.; Wang, P. Development of an innovative nitrite sensing platform based on the construction of carbon-layer-coated In2O3 porous tubes. Sens. Actuators B: Chem. 2021, 328, 129082.
Zhang, M.; Qiu, Y. F.; Han, Y.; Guo, Y.; Cheng, F. L. Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries. J. Power Sources 2016, 322, 163-168.
Li, S. T.; Liu, G.; Liu, J.; Lu, Y. K.; Yang, Q.; Yang, L. Y.; Yang, H. R.; Liu, S. L.; Lei, M.; Han, M. Carbon fiber cloth@VO2 (B): Excellent binder-free flexible electrodes with ultrahigh mass-loading. J. Mater. Chem. A 2016, 4, 6426-6432.
Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.
Guo, D. L.; Qin, J. W.; Yin, Z. G.; Bai, J. M.; Sun, Y. K.; Cao, M. H. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 2018, 45, 136-147.
Zhou, Y.; Wang, Z.; Lu, Y. C. Flexible aqueous lithium-ion batteries with ultrahigh areal capacity and long cycle life. Mater. Today Energy 2021, 19, 100570.
Verdier, N.; Foran, G.; Lepage, D.; Prébé, A.; Aymé-Perrot, D.; Dollé, M. Challenges in solvent-free methods for manufacturing electrodes and electrolytes for lithium-based batteries. Polymers 2021, 13, 323.
Liang, H. J.; Hou, B. H.; Li, W. H.; Ning, Q. L.; Yang, X.; Gu, Z. Y.; Nie, X. J.; Wang, G.; Wu, X. L. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ. Sci. 2019, 12, 3575-3584.
Guo, J. Z.; Yang, Y.; Liu, D. S.; Wu, X. L.; Hou, B. H.; Pang, W. L.; Huang, K. C.; Zhang, J. P.; Su, Z. M. A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: Superior energy storage performance and working mechanism. Adv. Energy Mater. 2018, 8, 1702504.
Zhao, C. D.; Guo, J. Z.; Gu, Z. Y.; Zhao, X. X.; Li, W. H.; Yang, X.; Liang, H. J.; Wu, X. L. Robust three-dimensional carbon conductive network in a NaVPO4F cathode used for superior high-rate and ultralong-lifespan sodium-ion full batteries. J. Mater. Chem. A 2020, 8, 17454-17462.
Gu, Z. Y.; Sun, Z. H.; Guo, J. Z.; Zhao, X. X.; Zhao, C. D.; Li, S. F.; Wang, X. T.; Li, W. H.; Heng, Y. L.; Wu, X. L. High-rate and long-cycle cathode for sodium-ion batteries: Enhanced electrode stability and kinetics via binder adjustment. ACS Appl. Mater. Interfaces 2020, 12, 47580-47589.
Guo, J. Z.; Wang, P. F.; Wu, X. L.; Zhang, X. H.; Yan, Q. Y.; Chen, H.; Zhang, J. P.; Guo, Y. G. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance. Adv. Mater. 2017, 29, 1701968.
Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; Zhao, X. X.; Li, W. H.; Yang, X.; Liang, H. J.; Zhao, C. D.; Wu, X. L. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. 2020, 65, 702-710.
Hammami, A.; Raymond, N.; Armand, M. Runaway risk of forming toxic compounds. Nature 2003, 424, 635-636.
Gao, Y. S.; Chen, G. H.; Wang, X. R.; Yang, H. Y.; Wang, Z. H.; Lin, W. R.; Xu, H. J.; Bai, Y.; Wu, C. PY13FSI-infiltrated SBA-15 as nonflammable and high ion-conductive ionogel electrolytes for quasi-solid-state sodium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 22981-22991.
Chen, G. H.; Zhang, K.; Liu, Y. R.; Ye, L.; Gao, Y. S.; Lin, W. R.; Xu, H. J.; Wang, X. R.; Bai, Y.; Wu, C. Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chem. Eng. J. 2020, 401, 126065.
Harris, K. D.; Elias, A. L.; Chung, H. J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771-2805.
Chen, G. H.; Ye, L.; Zhang, K.; Gao, M.; Lu, H.; Xu, H. J.; Bai, Y.; Wu, C. Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries. Chem. Eng. J. 2020, 394, 124885.
Chen, G. H.; Bai, Y.; Gao, Y. S.; Wang, Z. H.; Zhang, K.; Ni, Q.; Wu, F.; Xu, H. J.; Wu, C. Inhibition of crystallization of poly(ethylene oxide) by ionic liquid: insight into plasticizing mechanism and application for solid-state sodium ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 43252-43260.
Wang, F. X.; Wang, X. W.; Chang, Z.; Wu, X. W.; Liu, X.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Huang, W. A quasi-solid-state sodium-ion capacitor with high energy density. Adv. Mater. 2015, 27, 6962-6968.
Guo, J. Z.; Yang, A. B.; Gu, Z. Y.; Wu, X. L.; Pang, W. L.; Ning, Q. L.; Li, W. H.; Zhang, J. P.; Su, Z. M. Quasi-solid-state sodium-ion full battery with high-power/energy densities. ACS Appl. Mater. Interfaces 2018, 10, 17903-17910.
Xu, D. M.; Chao, D. L.; Wang, H. W.; Gong, Y. S.; Wang, R.; He, B. B.; Hu, X. L.; Fan, H. J. Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 2018, 8, 1702769.
Zhao, X. X.; Gu, Z. Y.; Li, W. H.; Yang, X.; Guo, J. Z.; Wu, X. L. Temperature-dependent electrochemical properties and electrode kinetics of Na3V2(PO4)2O2F cathode for sodium-ion batteries with high energy density. Chem. -Eur. J. 2020, 26, 7823-7830.
Suarez-Hernandez, R.; Ramos-Sánchez, G.; Santos-Mendoza, I. O.; Guzmán-González, G.; González, I. A graphical approach for identifying the limiting processes in lithium-ion battery cathode using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2020, 167, 100529.
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.
Wang, B.; Cheng, Y. F.; Su, H.; Cheng, M.; Li, Y.; Geng, H. B.; Dai, Z. F. Boosting transport kinetics of cobalt sulfides yolk-shell spheres by anion doping for advanced lithium and sodium storage. ChemSusChem 2020, 13, 4078-4085.
Tang, K.; Yu, X. Q.; Sun, J. P.; Li, H.; Huang, X. J. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 2011, 56, 4869-4875.
Kumar, V. K.; Ghosh, S.; Biswas, S.; Martha, S. K. Practical realization of O3-type NaNi0.5Mn0.3Co0.2O2 cathodes for sodium-ion batteries. J. Electrochem. Soc. 2020, 167, 080531.
Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019-5027.
Hwang, J. Y.; Myung, S. T.; Choi, J. U.; Yoon, C. S.; Yashiro, H.; Sun, Y. K. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J. Mater. Chem. A 2017, 5, 23671-23680.
Hwang, J. Y.; Yu, T. Y.; Sun, Y. K. Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0.5]O2 cathode: Facile and customizable approach to high-voltage sodium-ion batteries. J. Mater. Chem. A 2018, 6, 16854-16862.
Wang, W. L.; Gang, Y.; Hu, Z.; Yan, Z. C.; Li, W. J.; Li, Y. C.; Gu, Q. F.; Wang, Z. X.; Chou, S. L.; Liu, H. K. et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980.
Yu, T. Y.; Hwang, J. Y.; Bae, I. T.; Jung, H. G.; Sun, Y. K. High- performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries. J. Power Sources 2019, 422, 1-8.
Xie, Y. Y.; Xu, G. L.; Che, H. Y.; Wang, H.; Yang, K.; Yang, X. R.; Guo, F. M.; Ren, Y.; Chen, Z. H.; Amine, K.; et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mater. 2018, 30, 4909-4918.
Yu, T. Y.; Kim, J.; Hwang, J. Y.; Kim, H.; Han, G.; Jung, H. G.; Sun, Y. K. High-energy O3-Na1-2xCax[Ni0.5Mn0.5]O2 cathodes for long-life sodium-ion batteries. J. Mater. Chem. A 2020, 8, 13776-13786.
Liu, Y. C.; Liu, X. B.; Bu, F.; Zhao, X. D.; Wang, L. X.; Shen, Q. Y.; Zhang, J.; Zhang, N.; Jiao, L. F.; Fan, L. Z. Boosting fast and durable sodium-ion storage by tailoring well-shaped Na0.44MnO2 nanowires cathode. Electrochim. Acta 2019, 313, 122-130.
Tang, J. L.; Barker, J.; Pol, V. G. Sodium-ion battery anodes comprising carbon sheets: Stable cycling in half- and full-pouch cell configuration. Energy Technol. 2018, 6, 213-220.
Kim, J. K.; Lim, Y. J.; Kim, H.; Cho, G. B.; Kim, Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ. Sci. 2015, 8, 3589-3596.