Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The shuttle effect of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs) has been hampered their commercialization. Metal oxides as separator modifications can suppress the shuttle effect. Since there is no direct electron transport between metal oxides and LiPSs, absorbed LiPSs should be diffused from the surface of metal oxides to the carbon matrix to go through redox reactions. If diffusivity of LiPSs from metal oxides surface to carbon substrate is poor, it would hinder the redox reactions of LiPSs. Nevertheless, researchers tend to focus on the adsorption and overlook the diffusion of LiPSs. Herein, same morphology and different crystal phase of TiO2 nanosheets grown on carbon nanotubes (CNTs@TiO2-bronze and CNTs@TiO2-anatase) have been designed via a simple approach. Compared with CNTs and CNTs@TiO2-anatase composites, the battery with CNTs@TiO2-bronze modified separator delivers higher specific capacities and stronger cycling stability, especially at high current rates (~ 472 mAh·g-1 at 2.0 C after 1, 000 cycles). Adsorption tests, density functional theory calculations and electrochemical performance evaluations indicate that suitable diffusion and adsorption for LiPSs on the CNTs@TiO2-B surface can effectively capture LiPSs and promote the redox reaction, leading to the superior cycling performances.
Ding, X. W.; Yang, S.; Zhou, S. Y.; Zhan, Y. X.; Lai, Y. C.; Zhou, X. M.; Xu, X. J.; Nie, H. G.; Huang, S. M.; Yang, Z. Biomimetic molecule catalysts to promote the conversion of polysulfides for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2003354.
Zhou, S. Y.; Yang, S.; Ding, X. W.; Lai, Y. C.; Nie, H. G.; Zhang, Y. G.; Chan, D.; Duan, H.; Huang, S. M.; Yang, Z. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium-sulfur batteries. ACS Nano 2020, 14, 7538–7551.
Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.
Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.
Li, P. H.; Yang, Y.; Gong, S.; Lv, F.; Wang, W.; Li, Y. J.; Luo, M. C.; Xing, Y.; Wang, Q.; Guo, S. J. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res. 2019, 12, 2218–2223.
Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.
Chen, W. J.; Li, B. Q.; Zhao, C. X.; Zhao, M.; Yuan, T. Q.; Sun, R. C.; Huang, J. Q.; Zhang, Q. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. , Int. Ed. 2020, 59, 10732– 10745.
Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energ. Environ. Sci. 2020, 13, 1049–1075.
Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Huang, J. W.; Hu, A. J.; Gong, C. H.; Yan, C. Y.; Wang, X. F.; Xiong, J. Strategies toward high-loading lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 2000082.
Fan, H. Y.; Zhao, Y. X.; Xiao, J. H.; Zhang, J. F.; Wang, M.; Zhang, Y. G. A non-nucleophilic gel polymer magnesium electrolyte compatible with sulfur cathode. Nano Res. 2020, 13, 2749–2754.
Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li–S chemistry. Nano Res. 2020, 13, 3315–3320.
Deng, N. P.; Wang, L. Y.; Feng, Y.; Liu, M.; Li, Q. X.; Wang, G.; Zhang, L. T.; Kang, W. M.; Cheng, B. W.; Liu, Y. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chem. Eng. J. 2020, 388, 124241.
Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. A strategy for configuration of an integrated flexible sulfur cathode for high- performance lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2016, 55, 3992–3996.
Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.
Deng, N. P.; Liu, Y.; Li, Q. X.; Yan, J.; Zhang, L. T.; Wang, L. Y.; Zhang, Y. F.; Cheng, B. W.; Lei, W. W.; Kang, W. M. Functional double-layer membrane as separator for lithium-sulfur battery with strong catalytic conversion and excellent polysulfide-blocking. Chem. Eng. J. 2020, 382, 122918.
Chen, L.; Yu, H.; Li, W. X.; Dirican, M.; Liu, Y.; Zhang, X. W. Interlayer design based on carbon materials for lithium-sulfur batteries: A review. J. Mater. Chem. A 2020, 8, 10709–10735.
Kensy, C.; Härtel, P.; Maschita, J.; Dörfler, S.; Schumm, B.; Abendroth, T.; Althues, H.; Lotsch, B. V.; Kaskel, S. Scalable production of nitrogen-doped carbons for multilayer lithium-sulfur battery cells. Carbon 2020, 161, 190–197.
Li, R. R.; Peng, H. J.; Wu, Q. P.; Zhou, X. J.; He, J.; Shen, H. J.; Yang, M. H.; Li, C. L. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2020, 59, 12129–12138.
Rajkumar, P.; Diwakar, K.; Krishnaveni, K.; Radhika, G.; Subadevi, R.; Gnanamuthu, R. M.; Wang, F. M.; Sivakumar, M. N-doped graphene sheet encapsulated sulfur binary composite as cathode for lithium-sulfur battery applications. J. Mater. Eng. Perform. 2020, 29, 2865–2870.
Kim, S.; Shirvani-Arani, S.; Choi, S.; Cho, M.; Lee, Y. Strongly anchoring polysulfides by hierarchical Fe3O4/C3N4 nanostructures for advanced lithium-sulfur batteries. Nano-Micro Lett. 2020, 12, 139.
Wei, B. B.; Shang, C. Q.; Wang, X.; Zhou, G. F. Conductive FeOOH as multifunctional interlayer for superior lithium-sulfur batteries. Small 2020, 16, 2002789.
Shaibani, M.; Mirshekarloo, M. S.; Singh, R.; Easton, C. D.; Cooray, M. C. D.; Eshraghi, N.; Abendroth, T.; Dörfler, S.; Althues, H.; Kaskel, S. et al. Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Sci. Adv. 2020, 6, eaay2757.
Liu, Y. T.; Liu, S.; Li, G. R.; Yan, T. Y.; Gao, X. P. High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery. Adv. Sci. 2020, 7, 1903693.
Huang, Z. D.; Yang, M. T.; Qi, J. Q.; Zhang, P.; Lei, L. N.; Du, Q. C.; Bai, L.; Fu, H.; Yang, X. S.; Liu, R. Q. et al. Mitigating the polysulfides "shuttling" with TiO2 nanowires/nanosheets hybrid modified separators for robust lithium-sulfur batteries. Chem. Eng. J. 2020, 387, 124080.
Zhang, L. L.; Wan, F.; Cao, H. M.; Liu, L. L.; Wang, Y. J.; Niu, Z. Q. Integration of binary active sites: Co3V2O8 as polysulfide traps and catalysts for lithium-sulfur battery with superior cycling stability. Small 2020, 16, 1907153.
Yao, S. S.; Guo, R. D.; Wu, Z. Z.; Liu, M. Q.; Qian, X. Y.; Shen, X. Q.; Li, T. B.; Wang, L.; Wang, Y. H.; Qin, S. B. Fabrication of magnéli phase Ti4O7 nanorods as a functional sulfur material host for lithium-sulfur battery cathode. J. Electroceram. 2020, 44, 154–162.
Wei, W. L.; Li, J. M.; Wang, Q.; Liu, D.; Niu, J. Y.; Liu, P. Hierarchically porous SnO2 nanoparticle-anchored polypyrrole nanotubes as a high-efficient sulfur/polysulfide trap for high-performance lithium- sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 6362–6370.
Guo, J. L.; Zhao, S. Y.; Shen, Y. L.; Shao, G. S.; Zhang, F. X. "Room-like" TiO2 array as a sulfur host for lithium-sulfur batteries: Combining advantages of array and closed structures. ACS Sustain. Chem. Eng. 2020, 8, 7609–7616.
Zheng, M. Y.; Cai, X. M.; Tan, Y. F.; Wang, W. Q.; Wang, D. Y.; Fei, H. J.; Saha, P.; Wang, G. C. A high-resilience and conductive composite binder for lithium-sulfur batteries. Chem. Eng. J. 2020, 389, 124404.
Qi, W. T.; Jiang, W.; Xu, F.; Jia, J. B.; Yang, C.; Cao, B. Q. Improving confinement and redox kinetics of polysufides through hollow NC@CeO2 nanospheres for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 382, 122852.
Wang, M.; Tan, S. Y.; Kan, S. T.; Wu, Y. F.; Sang, S. B.; Liu, K. Y.; Liu, H. T. In-situ assembly of TiO2 with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery. J. Energy Chem. 2020, 49, 316–322.
Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000091.
Yu, Z. S.; Liu, M. L.; Guo, D. Y.; Wang, J. H.; Chen, X.; Li, J.; Jin, H. L.; Yang, Z.; Chen, X. A; Wang, S. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2020, 59, 6406–6411.
Zhao, Y.; Liu, M.; Lv, W.; He, Y. B.; Wang, C.; Yun, Q. B.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy 2016, 30, 1–8.
Zuo, Y. Z.; Zhao, M.; Ren, P. J.; Su, W. M.; Zhou, J.; Chen, Y. B.; Tang, Y. F.; Chen, Y. F. An efficient polysulfide trapper of an nitrogen and nickel-decorating amylum scaffold-coated separator for ultrahigh performance in lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1238–1246.
Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.
Ding, M.; Huang, S. Z.; Wang, Y.; Hu, J. P.; Pam, M. E.; Fan, S.; Shi, Y. M.; Ge, Q.; Yang, H. Y. Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 25078–25087.
Bao, W. Z.; Liu, L.; Wang, C. Y.; Choi, S.; Wang, D.; Wang, G. X. Facile synthesis of crumpled nitrogen-doped mxene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485.
Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.
Bhargav, A.; Chang, C. H.; Fu, Y. Z.; Manthiram, A. Rationally designed high-sulfur-content polymeric cathode material for lithium- sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 6136–6142.
Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.
Dong, W. J.; Wang, D.; Li, X. Y.; Yao, Y.; Zhao, X.; Wang, Z.; Wang, H. E.; Li, Y.; Chen, L. H.; Qian, D. et al. Bronze TiO2 as a cathode host for lithium-sulfur batteries. J. Energy Chem. 2020, 48, 259–266.
Dalton, A. S.; Belak, A. A.; Van der Ven, A. Thermodynamics of lithium in TiO2(B) from first principles. Chem. Mater. 2012, 24, 1568–1574.
Hu, H.; Yu, L.; Gao, X. H.; Lin, Z.; Lou, X. W. Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. Energy Environ. Sci. 2015, 8, 1480–1483.
Wang, Q.; Shen, L.; Xue, T.; Cheng, G.; Huang, C. Z.; Fan, H. J.; Feng, Y. P. Single-crystalline TiO2(B) nanobelts with unusual large exposed {100} facets and enhanced Li-storage capacity. Adv. Funct. Mater. 2021, 31, 2002187.
Chen, A.; Liu, W. F.; Hu, H.; Chen, T.; Ling, B. L.; Liu, K. Y. Three-dimensional TiO2-B nanotubes/carbon nanotubes intertwined network as sulfur hosts for high performance lithium-sulfur batteries. J. Power Sources 2018, 400, 23–30.
Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.
Jin, Q.; Li, L.; Wang, H. R.; Gao, H.; Zhu, C. C.; Zhang, X. T. Dual effects of the carbon fibers/Ti3C2Tx interlayer on retarding shuttle of polysulfides for stable lithium-sulfur batteries. Electrochim. Acta 2019, 312, 149–156.
Kim, D.; Kim, G.; Oh, S.; Park, J.; Lee, S.; Yoon, S.; Lee, J.; Lee, W.; Jeon, T. Y.; Cho, E. et al. Dual-doping of sulfur on mesoporous carbon as a cathode for the oxygen reduction reaction and lithium-sulfur batteries. ACS Sustain. Chem. Eng. 2020, 8, 8537–8548.
Cheng, Z. B.; Pan, H.; Chen, J. Q.; Meng, X. P.; Wang, R. H. Separator modified by cobalt-embedded carbon nanosheets enabling chemisorption and catalytic effects of polysulfides for high-energy- density lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901609.
Li, H. X.; Ma, S.; Cai, H. Q.; Zhou, H. H.; Huang, Z. Y.; Hou, Z. H.; Wu, J. J.; Yang, W. J.; Yi, H. B.; Fu, C. P. et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2019, 18, 338–348.
Ren, H.; Yu, R. B.; Qi, J.; Zhang, L. J.; Jin, Q.; Wang, D. Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance. Adv. Mater. 2019, 31, 1805754.
Wang, X. R.; Bi, X. X.; Wang, S. N.; Zhang, Y.; Du, H.; Lu, J. High-rate and long-term cycle stability of Li–S batteries enabled by Li2S/TiO2-impregnated hollow carbon nanofiber cathodes. ACS Appl. Mater. Interfaces 2018, 10, 16552–16560.
Yao, J.; Mei, T.; Cui, Z. Q.; Yu, Z. H.; Xu, K.; Wang, X. B. Hollow carbon spheres with TiO2 encapsulated sulfur and polysulfides for long-cycle lithium-sulfur batteries. Chem. Eng. J. 2017, 330, 644–650.
Park, G. D.; Lee, J.; Piao, Y. Z; Kang, Y. C. Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li–S batteries. Chem. Eng. J. 2018, 335, 600–611.
Sun, Q. Q.; Chen, K. X.; Liu, Y. B.; Li, Y. F.; Wei, M. D. Rutile TiO2 mesocrystals as sulfur host for high-performance lithium-sulfur batteries. Chem. –Eur. J. 2017, 23, 16312–16318.
Shao, H. Y.; Wang, W. K.; Zhang, H.; Wang, A. B.; Chen, X. N.; Huang, Y. Q. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power Sources 2018, 378, 537–545.
Li, Z. L.; Xiao, Z. B.; Li, P. Y.; Meng, X. P.; Wang, R. H. Enhanced chemisorption and catalytic effects toward polysulfides by modulating hollow nanoarchitectures for long-life lithium-sulfur batteries. Small 2020, 16, 1906114.
Lin, H. B.; Zhang, S. L.; Zhang, T. R.; Cao, S.; Ye, H. L.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. A cathode-integrated sulfur-deficient Co9S8 catalytic interlayer for the reutilization of "lost" polysulfides in lithium-sulfur batteries. ACS Nano 2019, 13, 7073–7082.
Li, P.; Shao, L. Y.; Wang, P. F.; Yu, H. X.; Qian, S. S.; Shui, M.; Long, N. B.; Shu, J. Lithium sodium vanadium phosphate and its phase transition as cathode material for lithium ion batteries. Electrochim. Acta 2015, 180, 120–128.
Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829–836.