AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities

Lei Jiao1,§Wei Ye2,§Yikun Kang3,§Yu Zhang1Weiqing Xu1Yu Wu1Wenling Gu1Weiyu Song3( )Yujie Xiong4( )Chengzhou Zhu1( )
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of ChemistryCentral China Normal University Wuhan 430079 China
College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei 230026 China

§Lei Jiao, Wei Ye, and Yikun Kang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Replacement of enzymes with nanomaterials such as atomically dispersed metal catalysts is one of the most crucial steps in addressing the challenges in biocatalysis. Despite the breakthroughs of single-atom catalysts in enzyme-mimicking, a fundamental investigation on the development of an instructional strategy is still required for mimicking biatomic/multiatomic active sites in natural enzymes and constructing synergistically enhanced metal atom active sites. Herein, Fe2NC catalysts with atomically dispersed Fe-Fe dual-sites supported by the metal-organic frameworks-derived nitrogen-doped carbon are employed as biomimetic catalysts to perform proof-of-concept investigation. The effect of Fe atom number toward typical oxidase (cytochrome C oxidase, NADH oxidase, and ascorbic acid oxidase) and peroxidase (NADH peroxidase and ascorbic acid peroxidase) activities is systematically evaluated by experimental and theoretical investigations. A peroxo-like O2 adsorption in Fe2NC nanozymes could accelerate the O–O activation and thus achieve the enhanced enzyme-like activities. This work achieves the vivid simulation of the enzyme active sites and provides the theoretical basis for the design of high-performance nanozymes. As a concept application, a colorimetric biosensor for the detection of S2– in tap water is established based on the inhibition of enzyme-like activity of Fe2NC nanozymes.

Electronic Supplementary Material

Download File(s)
12274_2021_3581_MOESM1_ESM.pdf (2 MB)

References

1

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (Ⅱ). Chem. Soc. Rev. 2019, 48, 1004–1076.

2

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

3

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

4

Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem. , Int. Ed. 2018, 57, 9224–9237.

5

Wang, Z. R.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 2020, 41, 81–119.

6

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase- like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

7

Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

8

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

9

Chong, Y.; Dai, X.; Fang, G.; Wu, R. F.; Zhao, L.; Ma, X. C.; Tian, X.; Lee, S.; Zhang, C.; Chen, C. Y. et al. Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nat. Commun. 2018, 9, 4861.

10

Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat. Commun. 2018, 9, 129.

11

Xu, W. Q.; Kang, Y. K.; Jiao, L.; Wu, Y.; Yan, H. Y.; Li, J. L.; Gu, W. L.; Song, W. Y.; Zhu, C. Z. Tuning atomically dispersed Fe sites in metal-organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nano-Micro Lett. 2020, 12, 184.

12

Xi, J. Q.; Zhang, R. F.; Wang, L. M.; Xu, W.; Liang, Q.; Li, J. Y.; Jiang, J.; Yang, Y. L.; Yan, X. Y.; Fan, K. L. et al. A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv. Funct. Mater. 2021, 31, 2007130.

13

Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.

14

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. , Int. Ed. 2019, 58, 4911–4916.

15

Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

16

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 13944–13960.

17

Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.

18

Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

19

Luo, X.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Z. Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 2020, 12, 163.

20

Gao, C.; Low, J. X.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

21

Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. , Int. Ed. 2020, 59, 6224–6229.

22

Shen, L. H.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021, 93, 1221–1231.

23

Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

24

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem. , Int. Ed. 2020, 59, 2565–2576.

25

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

26

Jiao, L.; Xu, W. Q.; Yan, H. Y.; Wu, Y.; Liu, C. R.; Du, D.; Lin, Y. H.; Zhu, C. Z. Fe–N–C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999.

27

Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe–N–C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.

28

Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

29

Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe–N–C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108.

30

Wang, Y.; Zhang, Z. W.; Jia, G. R.; Zheng, L. R.; Zhao, J. X.; Cui, X. Q. Elucidating the mechanism of the structure-dependent enzymatic activity of Fe–N/C oxidase mimics. Chem. Commun. 2019, 55, 5271–5274.

31

Adam, S. M.; Wijeratne, G. B.; Rogler, P. J.; Diaz, D. E.; Quist, D. A.; Liu, J. J.; Karlin, K. D. Synthetic Fe/Cu complexes: Toward understanding heme-copper oxidase structure and function. Chem. Rev. 2018, 118, 10840–11022.

32

Schaefer, A. W.; Roveda, A. C. Jr.; Jose, A.; Solomon, E. I. Geometric and electronic structure contributions to O–O cleavage and the resultant intermediate generated in heme-copper oxidases. J. Am. Chem. Soc. 2019, 141, 10068–10081.

33

Schaefer, A. W.; Kieber-Emmons, M. T.; Adam, S. M.; Karlin, K. D.; Solomon, E. I. Phenol-induced O–O bond cleavage in a low-spin heme–peroxo–copper complex: Implications for O2 reduction in heme–copper oxidases. J. Am. Chem. Soc. 2017, 139, 7958–7973.

34

Li, M. H.; Chen, J. X.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Oxidase- like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J. Am. Chem. Soc. 2020, 142, 15569–15574.

35

Mishra, B. B.; Gautam, S. Polyphenol oxidases: Biochemical and molecular characterization, distribution, role and its control. Enzyme Eng. 2016, 5, 1000141.

36

Wang, J.; You, R.; Zhao, C.; Zhang, W.; Liu, W.; Fu, X. P.; Li, Y. Y.; Zhou, F. Y.; Zheng, X. S.; Xu, Q. et al. N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation. ACS Catal. 2020, 10, 2754–2761.

37

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

38

Tian, S. B.; Fu, Q.; Chen, W. X.; Feng, Q. C.; Chen, Z.; Zhang, J.; Cheong, W. C.; Yu, R.; Gu, L.; Dong, J. C. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353.

39

Xiao, M. L.; Zhang, H.; Chen, Y. T.; Zhu, J. B.; Gao, L. Q.; Jin, Z.; Ge, J. J.; Jiang, Z.; Chen, S. L.; Liu, C. P. et al. Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy 2018, 46, 396–403.

40

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. , Int. Ed. 2019, 58, 2622–2626.

41

Ye, W.; Chen, S. M.; Lin, Y.; Yang, L.; Chen, S. J.; Zheng, X. S.; Qi, Z. M.; Wang, C. M.; Long, R.; Chen, M. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.

42

Singh, N.; Mugesh, G. CeVO4 nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew. Chem. , Int. Ed. 2019, 58, 7797–7801.

43

Kang, T. S.; Korber, D. R.; Tanaka, T. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1. AMB Express 2013, 3, 10.

44

Jia, B. L.; Park, S. C.; Lee, S.; Pham, B. P.; Yu, R.; Le, T. L.; Han, S. W.; Yang, J. K.; Choi, M. S.; Baumeister, W. et al. Hexameric ring structure of a thermophilic archaeon NADH oxidase that produces predominantly H2O. FEBS J. 2008, 275, 5355–5366.

45

Jiao, L.; Xu, W. Q.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Li, H.; Du, D.; Lin, Y. H.; Zhu, C. Z. A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. Chem. Commun. 2019, 55, 9865– 9868.

46

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

47

Karim, M. N.; Anderson, S. R.; Singh, S.; Ramanathan, R.; Bansal, V. Nanostructured silver fabric as a free-standing Nanozyme for colorimetric detection of glucose in urine. Biosens. Bioelectron. 2018, 110, 8–15.

48

Liu, Y.; Ding, D.; Zhen, Y. L.; Guo, R. Amino acid-mediated "turn-off/ turn-on" nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 2017, 92, 140–146.

49

Xi, Z.; Cheng, X.; Gao, Z. Q.; Wang, M. J.; Cai, T.; Muzzio, M.; Davidson, E.; Chen, O.; Jung, Y.; Sun, S. H. et al. Strain effect in palladium nanostructures as nanozymes. Nano Lett. 2020, 20, 272–277.

50

Weerathunge, P.; Ramanathan, R.; Torok, V. A.; Hodgson, K.; Xu, Y.; Goodacre, R.; Behera, B. K.; Bansal, V. Ultrasensitive colorimetric detection of murine norovirus using Nanozyme aptasensor. Anal. Chem. 2019, 91, 3270–3276.

51

Oh, S.; Kim, J.; Tran, V. T.; Lee, D. K.; Ahmed, S. R.; Hong, J. C.; Lee, J.; Park, E. Y.; Lee, J. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza a virus detection. ACS Appl. Mater. Interfaces 2018, 10, 12534–12543.

52

Li, Y. H.; Fang, Y. S.; Gao, W. Q.; Guo, X. J.; Zhang, X. M. Porphyrin- based porous organic polymer as peroxidase mimics for sulfide-ion colorimetric sensing. ACS Sustainable Chem. Eng. 2020, 8, 10870– 10880.

53

Singh, S.; Mitra, K.; Shukla, A.; Singh, R.; Gundampati, R. K.; Misra, N.; Maiti, P.; Ray, B. Brominated graphene as mimetic peroxidase for sulfide ion recognition. Anal. Chem. 2017, 89, 783–791.

54

Suzuki, K.; Olah, G.; Modis, K.; Coletta, C.; Kulp, G.; Gerö, D.; Szoleczky, P.; Chang, T. J.; Zhou, Z. M.; Wu, L. Y. et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc. Natl. Aca. Sci. USA 2011, 108, 13829–13834.

55

McGeer, E. G.; McGeer, P. L. Neuroinflammation in Alzheimer's disease and mild cognitive impairment: A field in its infancy. J. Alzheimer's Dis. 2010, 19, 355–361.

Nano Research
Pages 959-964
Cite this article:
Jiao L, Ye W, Kang Y, et al. Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. Nano Research, 2022, 15(2): 959-964. https://doi.org/10.1007/s12274-021-3581-y
Topics:

830

Views

50

Crossref

49

Web of Science

50

Scopus

2

CSCD

Altmetrics

Received: 11 March 2021
Revised: 18 April 2021
Accepted: 06 May 2021
Published: 09 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return