AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray

Guilai Wen1Jie Liang2Qian Liu3Tingshuai Li2Xuguang An3Fang Zhang4Abdulmohsen Ali Alshehri5Khalid Ahmed Alzahrani5Yonglan Luo1( )Qingquan Kong3( )Xuping Sun2( )
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province School of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 China
Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
Institute for Advanced Study Chengdu University Chengdu 610106 China
National Engineering Research Center for Nanotechnology No. 28 East Jiang Chuan Road Shanghai 200241 China
Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah, 21589, Saudi Arabia
Show Author Information

Graphical Abstract

Abstract

Industrial-scale ammonia (NH3) production mainly relies on the energy-intensive and environmentally unfriendly Haber-Bosch process. Such issue can be avoided by electrocatalytic N2 reduction which however suffers from limited current efficiency and NH3 yield. Herein, we demonstrate ambient NH3 production via electrochemical nitrite (NO2) reduction catalyzed by a CoP nanoarray on titanium mesh (CoP NA/TM). When tested in 0.1 M PBS (pH = 7) containing 500 ppm NO2, such CoP NA/TM is capable of affording a large NH3 yield of 2, 260.7 ± 51.5 μg·h–1·cm–2 and a high Faradaic efficiency of 90.0 ± 2.3% at –0.2 V vs. a reversible hydrogen electrode. Density functional theory calculations reveal that the potential-determining step for NO2 reduction over CoP (112) is *NO2 → *NO2H.

Electronic Supplementary Material

Download File(s)
12274_2021_3583_MOESM1_ESM.pdf (3.6 MB)

References

1

Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

2

Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

3
Jennings, J. R. Catalytic Ammonia Synthesis: Fundamentals and Practice; Spring: Boston, 1991.https://doi.org/10.1007/978-1-4757-9592-9
4

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

5

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

6

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

7

Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043.

8

Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.

9

Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545–1556.

10

Su, H.; Cheng, Y. F.; Oswald, R.; Behrendt, T.; Trebs, I.; Meixner, F. X.; Andreae, M. O.; Cheng, P.; Zhang, Y. H.; Pöschl, U. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 2011, 333, 1616–1618.

11

Duca, M.; Figueiredo, M. C.; Climent, V.; Rodriguez, P.; Feliu, J. M.; Koper, M. T. M. Selective catalytic reduction at quasi-perfect Pt(100) domains: A universal low-temperature pathway from nitrite to N2. J. Am. Chem. Soc. 2011, 133, 10928–10939.

12

Shin, H.; Jung, S.; Bae, S.; Lee, W.; Kim, H. Nitrite reduction mechanism on a Pd surface. Environ. Sci. Technol. 2014, 48, 12768–12774.

13

Singh, N.; Patel, K.; Sahoo, S. K.; Pati, R. K.; Kumar, R. Gastrointestinal tract mechanism of nitrite capture modeled on the self-assembled monolayer of thioproline for electrochemical nitrite determination. J. Mater. Chem. A 2017, 5, 3389–3403.

14

Liu, D. M.; Wang, P.; Zhang X. Y.; Xu, X. L.; Wu, H.; Li, L. Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013. PLoS One 2014, 9, e93308.

15

Weyer, P. J.; Cerhan, J. R.; Kross, B. C.; Hallberg, G. R.; Kantamneni, J.; Breuer, G.; Jones, M. P.; Zheng W.; Lynch, C. F. Municipal drinking water nitrate level and cancer risk in older women: The Iowa women's health study. Epidemiology 2001, 12, 327–338.

16

Gulis, G.; Czompolyova, M.; Cerhan, J. R. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava district, Slovakia. Environ. Res. 2002, 88, 182–187.

17

Gao, W. L.; Guan, N. J.; Chen, J. X.; Guan, X. X.; Jin, R. C.; Zeng, H. S.; Liu, Z. G.; Zhang, F. X. Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Appl. Catal. B 2003, 46, 341–351.

18

Matatov-Meytal, Y.; Shindler, Y.; Sheintuch, M. Cloth catalysts in water denitrification: III. pH inhibition of nitrite hydrogenation over Pd/ACC. Appl. Catal. B 2003, 45, 127–134.

19

Liu, H.; Liu, X. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Feng, M.; Li, H. B. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J. Mater. Chem. A 2018, 6, 4611–4616.

20

He, D. P.; Li, Y. M.; Ooka, H.; Go, Y. K.; Jin, F. M.; Kim, S. H.; Nakamura, R. Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer. J. Am. Chem. Soc. 2018, 140, 2012–2015.

21

Arikawa, Y.; Otsubo, Y.; Fujino, H.; Horiuchi, S.; Sakuda, E.; Umakos K. Nitrite reduction cycle on a dinuclear ruthenium complex producing ammonia. J. Am. Chem. Soc. 2018, 140, 842–847.

22

Clark, C. A.; Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G. H.; Senftle T. P.; Wong, M. S. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS Catal. 2020, 10, 494−509.

23

Guo, Y. X.; Stroka, J. R.; Kandemir, B.; Dickerson, C. E.; Bren, K. L. Cobalt metallopeptide electrocatalyst for the selective reduction of nitrite to ammonium. J. Am. Chem. Soc. 2018, 140, 16888–16892.

24

Xu, S.; Kwon, H. Y.; Ashley, D. C.; Chen, C. H.; Jakubikova, E.; Smith, J. M. Intramolecular hydrogen bonding facilitates electrocatalytic reduction of nitrite in aqueous solutions. Inorg. Chem. 2019, 58, 9443−9451.

25

Wang, C. H.; Zhou, W.; Sun, Z. J.; Wang, Y. T.; Zhang, B.; Yu, Y. F. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. J. Mater. Chem. A 2021, 9, 239–243.

26

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo- illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

27

Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.

28

Green, L. C.; Wagner, D. A.; Glogowski, J.; Skipper, P. L.; Wishnok J. S.; Tannenbaum, S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138.

29

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

30

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

31

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

32

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

33
Wang, V.; Xu, N. Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A pre- and post-processing program for the VASP code. 2013. http://vaspkit.sourceforge.net.
34

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0−14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

35

Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.

36

Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High- performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

37
Bianchi, E.; Bruschi, R.; Draisci, R.; Lucentini, L. Comparison between ion chromatography and a spectrophotometric method for determination of nitrates in meat products. Z. Lebensm. Unters. Forch. 195, 200, 256–260.https://doi.org/10.1007/BF01187515
38

Onchoke, K. K.; Sasu, S. A. Determination of hexavalent chromium (Cr(VI)) concentrations via ion chromatography and UV–Vis spectrophotometry in samples collected from nacogdoches wastewater treatment plant, East Texas (USA). Adv. Environ. Chem. 2016, 2016, 3468635.

39

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

40

Li, H.; Yan, C. X.; Guo, H. Y.; Shin, K.; Humphrey, S. M.; Werth, C. J.; Henkelman, G. CuxIr1−x nanoalloy catalysts achieve near 100% selectivity for aqueous nitrite reduction to NH3. ACS Catal. 2020, 10, 7915–7921.

41

Zhang, Z. Q.; Shi, W. X.; Wang, W.; Xu, Y. P.; Bao, X.; Zhang, R. J.; Zhang, B.; Guo, Y.; Gui, F. Y. Interfacial electronic effects of palladium nanocatalysts on the by-product ammonia selectivity during nitrite catalytic reduction. Environ. Sci. Nano 2018, 5, 338–349.

Nano Research
Pages 972-977
Cite this article:
Wen G, Liang J, Liu Q, et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Research, 2022, 15(2): 972-977. https://doi.org/10.1007/s12274-021-3583-9
Topics:
Part of a topical collection:

1219

Views

120

Crossref

124

Web of Science

117

Scopus

9

CSCD

Altmetrics

Received: 14 February 2021
Revised: 24 April 2021
Accepted: 12 May 2021
Published: 09 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return