Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Industrial-scale ammonia (NH3) production mainly relies on the energy-intensive and environmentally unfriendly Haber-Bosch process. Such issue can be avoided by electrocatalytic N2 reduction which however suffers from limited current efficiency and NH3 yield. Herein, we demonstrate ambient NH3 production via electrochemical nitrite (NO2–) reduction catalyzed by a CoP nanoarray on titanium mesh (CoP NA/TM). When tested in 0.1 M PBS (pH = 7) containing 500 ppm NO2–, such CoP NA/TM is capable of affording a large NH3 yield of 2, 260.7 ± 51.5 μg·h–1·cm–2 and a high Faradaic efficiency of 90.0 ± 2.3% at –0.2 V vs. a reversible hydrogen electrode. Density functional theory calculations reveal that the potential-determining step for NO2– reduction over CoP (112) is *NO2 → *NO2H.
Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.
Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.
Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.
Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043.
Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.
Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545–1556.
Su, H.; Cheng, Y. F.; Oswald, R.; Behrendt, T.; Trebs, I.; Meixner, F. X.; Andreae, M. O.; Cheng, P.; Zhang, Y. H.; Pöschl, U. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 2011, 333, 1616–1618.
Duca, M.; Figueiredo, M. C.; Climent, V.; Rodriguez, P.; Feliu, J. M.; Koper, M. T. M. Selective catalytic reduction at quasi-perfect Pt(100) domains: A universal low-temperature pathway from nitrite to N2. J. Am. Chem. Soc. 2011, 133, 10928–10939.
Shin, H.; Jung, S.; Bae, S.; Lee, W.; Kim, H. Nitrite reduction mechanism on a Pd surface. Environ. Sci. Technol. 2014, 48, 12768–12774.
Singh, N.; Patel, K.; Sahoo, S. K.; Pati, R. K.; Kumar, R. Gastrointestinal tract mechanism of nitrite capture modeled on the self-assembled monolayer of thioproline for electrochemical nitrite determination. J. Mater. Chem. A 2017, 5, 3389–3403.
Liu, D. M.; Wang, P.; Zhang X. Y.; Xu, X. L.; Wu, H.; Li, L. Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013. PLoS One 2014, 9, e93308.
Weyer, P. J.; Cerhan, J. R.; Kross, B. C.; Hallberg, G. R.; Kantamneni, J.; Breuer, G.; Jones, M. P.; Zheng W.; Lynch, C. F. Municipal drinking water nitrate level and cancer risk in older women: The Iowa women's health study. Epidemiology 2001, 12, 327–338.
Gulis, G.; Czompolyova, M.; Cerhan, J. R. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava district, Slovakia. Environ. Res. 2002, 88, 182–187.
Gao, W. L.; Guan, N. J.; Chen, J. X.; Guan, X. X.; Jin, R. C.; Zeng, H. S.; Liu, Z. G.; Zhang, F. X. Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Appl. Catal. B 2003, 46, 341–351.
Matatov-Meytal, Y.; Shindler, Y.; Sheintuch, M. Cloth catalysts in water denitrification: III. pH inhibition of nitrite hydrogenation over Pd/ACC. Appl. Catal. B 2003, 45, 127–134.
Liu, H.; Liu, X. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Feng, M.; Li, H. B. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J. Mater. Chem. A 2018, 6, 4611–4616.
He, D. P.; Li, Y. M.; Ooka, H.; Go, Y. K.; Jin, F. M.; Kim, S. H.; Nakamura, R. Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer. J. Am. Chem. Soc. 2018, 140, 2012–2015.
Arikawa, Y.; Otsubo, Y.; Fujino, H.; Horiuchi, S.; Sakuda, E.; Umakos K. Nitrite reduction cycle on a dinuclear ruthenium complex producing ammonia. J. Am. Chem. Soc. 2018, 140, 842–847.
Clark, C. A.; Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G. H.; Senftle T. P.; Wong, M. S. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS Catal. 2020, 10, 494−509.
Guo, Y. X.; Stroka, J. R.; Kandemir, B.; Dickerson, C. E.; Bren, K. L. Cobalt metallopeptide electrocatalyst for the selective reduction of nitrite to ammonium. J. Am. Chem. Soc. 2018, 140, 16888–16892.
Xu, S.; Kwon, H. Y.; Ashley, D. C.; Chen, C. H.; Jakubikova, E.; Smith, J. M. Intramolecular hydrogen bonding facilitates electrocatalytic reduction of nitrite in aqueous solutions. Inorg. Chem. 2019, 58, 9443−9451.
Wang, C. H.; Zhou, W.; Sun, Z. J.; Wang, Y. T.; Zhang, B.; Yu, Y. F. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. J. Mater. Chem. A 2021, 9, 239–243.
Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo- illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.
Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.
Green, L. C.; Wagner, D. A.; Glogowski, J.; Skipper, P. L.; Wishnok J. S.; Tannenbaum, S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138.
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0−14. J. Am. Chem. Soc. 2014, 136, 7587–7590.
Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.
Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High- performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
Onchoke, K. K.; Sasu, S. A. Determination of hexavalent chromium (Cr(VI)) concentrations via ion chromatography and UV–Vis spectrophotometry in samples collected from nacogdoches wastewater treatment plant, East Texas (USA). Adv. Environ. Chem. 2016, 2016, 3468635.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Li, H.; Yan, C. X.; Guo, H. Y.; Shin, K.; Humphrey, S. M.; Werth, C. J.; Henkelman, G. CuxIr1−x nanoalloy catalysts achieve near 100% selectivity for aqueous nitrite reduction to NH3. ACS Catal. 2020, 10, 7915–7921.
Zhang, Z. Q.; Shi, W. X.; Wang, W.; Xu, Y. P.; Bao, X.; Zhang, R. J.; Zhang, B.; Guo, Y.; Gui, F. Y. Interfacial electronic effects of palladium nanocatalysts on the by-product ammonia selectivity during nitrite catalytic reduction. Environ. Sci. Nano 2018, 5, 338–349.