AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1−xWxS2: Highly-improved visible-light-driven H2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1−xWxS2 cocatalyst

Wenjing Wang1Hanchu Chen1,3Jiakun Wu1Hui Wang3Shaoxiang Li2Bo Wang4Yanyan Li1Haifeng Lin1,5( )Lei Wang1,2( )
Key Laboratory of Eco-chemical Engineering Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science Shandong Provincial Key Laboratory of Olefin Catalysis and PolymerizationTaishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao 266042 China
Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization Key Laboratory of Rubber-Plastics of Ministry of Education School of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao 266042 China
School of Applied Physics and Materials Wuyi University Jiangmen 529020 China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
Show Author Information

Graphical Abstract

Abstract

Photocatalytic water splitting for hydrogen (H2) production is a green sustainable technology, in which highly-efficient steady photocatalysts are fundamentally required. In this work, unique CdS/Cd0.5Zn0.5S-Mo1−xWxS2 photocatalyst constructed by CdS hollow nano-spheres with successively surface-modified Cd0.5Zn0.5S shell and defect-rich Mo1−xWxS2 ultrathin nanosheets was reported for the first time. Interestingly, the Cd0.5Zn0.5S shell could greatly enhance the photo-stability and reduce the carrier recombination of CdS. Meanwhile, enriching active sites and accelerating charge transfer could be achieved via anchoring defect-rich Mo1−xWxS2 onto CdS/Cd0.5Zn0.5S hollow heterostructures. Specifically, the optimized CdS/Cd0.5Zn0.5S-Mo1−xWxS2 (6 h Cd0.5Zn0.5S-coating, 7 wt.% Mo1−xWxS2, x = 0.5) hybrid delivered an exceptional H2 generation rate of 215.99 mmol·g−1·h−1, which is approximately 502, 134, and 23 times that of pure CdS, CdS/Cd0.5Zn0.5S, and 3 wt.% Pt-loaded CdS/Cd0.5Zn0.5S, respectively. Remarkably, a high H2 evolution reaction (HER) apparent quantum yield (AQY) of 64.81% was obtained under 420-nm irradiation. In addition, the CdS/Cd0.5Zn0.5S-Mo1−xWxS2 was also durable for H2 production under long-term irradiation. This work provides valuable inspirations to rational design and synthesis of efficient and stable hybrid photocatalysts for solar energy conversion.

Electronic Supplementary Material

Download File(s)
12274_2021_3585_MOESM1_ESM.pdf (2.9 MB)

References

1

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

2

Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

3

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

4

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

5

Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.

6

Tan, X. N.; Zhang, J. L.; Tan, D. X.; Shi, J. B.; Cheng, X. Y.; Zhang, F. Y.; Liu, L. F.; Zhang, B. X.; Su, Z. Z.; Han, B. X. Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. Nano Res. 2019, 12, 1967–1972.

7

Wei, Y. Z.; Wang, J. Y.; Yu, R. B.; Wan, J. W.; Wang, D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem. , Int. Ed. 2019, 58, 1422–1426.

8

Yuan, Y. J.; Chen, D. Q.; Yu, Z. T.; Zou, Z. G. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 11606–11630.

9

Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280.

10

Zhu, Y. X.; Jiang, X.; Lin, L.; Wang, S. H.; Chen, C. Fabrication of ZnS/CdS heterojunction by using bimetallic MOFs template for photocatalytic hydrogen generation. Chem. Res. Chin. Univ. 2020, 36, 1032–1038.

11

Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

12

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photo­synthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

13

Sun, T.; Wang, C. X.; Xu, Y. X. Covalent triazine framework nanosheets for efficient energy storage and conversion. Chem. Res. Chin. Univ. 2020, 36, 640–647.

14

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

15

Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646.

16

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

17

Liu, M. C.; Jing, D. W.; Zhou, Z. H.; Guo, L. J. Twin-induced one- dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278.

18

Zhang, P.; Wang, S. B.; Guan, B. Y.; Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 2019, 12, 164–168.

19

Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

20

Wei, Y. Z.; Yang, N. L.; Huang, K. K.; Wan, J. W.; You, F. F.; Yu, R. B.; Feng, S. H.; Wang, D. Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport. Adv. Mater. 2020, 32, 2002556.

21

Wei, Y. Z.; Wan, J. W.; Yang, N. L.; Yang, Y.; Ma, Y. W.; Wang, S. C.; Wang, J. Y.; Yu, R. B.; Gu, L.; Wang, L. H. et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev. 2020, 7, 1638–1646.

22

Xin, Y. N.; Huang, Y.; Lin, K.; Yu, Y. F.; Zhang, B. Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production. Sci. Bull. 2018, 63, 601–608.

23

Xing, M. Y.; Qiu, B. C.; Du, M. M.; Zhu, Q. H.; Wang, L. Z.; Zhang, J. L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1702624.

24

Zhang, P.; Luan, D. Y.; Lou, X. W. Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation. Adv. Mater. 2020, 32, 2004561.

25

Huang, L.; Wang, X. L.; Yang, J. H.; Liu, G.; Han, J. F.; Li, C. Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J. Phys. Chem. C 2013, 117, 11584–11591.

26

Xie, Y. P.; Yu, Z. B.; Liu, G.; Ma, X. L.; Cheng, H. M. CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ. Sci. 2014, 7, 1895–1901.

27

Jiang, D. C.; Sun, Z. J.; Jia, H. X.; Lu, D. P.; Du, P. W. A cocatalyst- free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 2016, 4, 675–683.

28

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth- abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

29

Yin, Y. G.; Wei, S. T.; Zhang, L.; Guo, Z. W.; Huang, H. H.; Sai, S. R.; Wu, J. D.; Xu, Y. C.; Liu, Y.; Zheng, L. R. et al. Copper-linked 1T MoS2/Cu2O heterostructure for efficient photocatalytic hydrogen evolution. Chem. Res. Chin. Univ. 2020, 36, 1122–1127.

30

Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble- metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

31

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

32

Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.

33

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881– 17888.

34

Li, R. C.; Yang, L. J.; Xiong, T. L.; Wu, Y. S.; Cao, L. D.; Yuan, D. S.; Zhou, W. J. Nitrogen doped MoS2 nanosheets synthesized via a low- temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 2017, 356, 133–139.

35

Xin, X.; Song, Y. R.; Guo, S. H.; Zhang, Y. Z.; Wang, B. L.; Wang, Y. J.; Li, X. H. One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J. Alloys Compd. 2020, 829, 154635.

36

Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

37

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

38

Chen, D. Y.; Ji, G.; Ding, B.; Ma, Y.; Qu, B. H.; Chen, W. X.; Lee, J. Y. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale 2013, 5, 7890–7896.

39

Gopannagari, M.; Kumar, D. P.; Reddy, D. A.; Hong, S.; Song, M. I.; Kim, T. K. In situ preparation of few-layered WS2 nanosheets and exfoliation into bilayers on CdS nanorods for ultrafast charge carrier migrations toward enhanced photocatalytic hydrogen production. J. Catal. 2017, 351, 153–160.

40

Lin, H. F.; Sun, B. W.; Wang, H.; Ruan, Q. Q.; Geng, Y. L.; Li, Y. Y.; Wu, J. K.; Wang, W. J.; Liu, J.; Wang, X. Unique 1D Cd1–xZnxS@O-MoS2/NiOx nano-hybrids: Highly efficient visible-light- driven photocatalytic hydrogen evolution via integrated structural regulation. Small 2019, 15, 1804115.

41

Liu, L.; Jiao, Y.; Guo, Q.; Zhao, W.; Dai, W.; Zhang, J.; Gao, C.; Yu, W.; Li, X. Influence of sodium citrate on deposition and properties of Cd1–xZnxS buffer layers by chemical bath deposition. Chalcogenide Lett. 2017, 14, 373–380.

42

Sun, X. S.; Luo, X.; Zhang, X. D.; Xie, J. F.; Jin, S.; Wang, H.; Zheng, X. S.; Wu, X. J.; Xie, Y. Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801.

43

Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

44

He, Q.; Wan, Y. Y.; Zhang, Y. K.; Jiang, H. L.; Liu, H. J.; Zheng, X. S.; Chen, S. M.; Wu, X. J.; Song, L. 1T'-Mo1–xWxS2/CdS heterostructure enabling robust photocatalytic water splitting: Unveiling the interfacial charge polarization. Solar RRL 2018, 2, 1800032.

45

Hao, X. Q.; Wang, Y. C.; Zhou, J.; Cui, Z. W.; Wang, Y.; Zou, Z. G. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl. Catal. B Environ. 2018, 221, 302–311.

46

Lu, K. Q.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Earth-abundant MoS2 and cobalt phosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytic hydrogen production. Langmuir 2019, 35, 11056–11065.

47

Zhang, Z.; Ma, X. X.; Tang, J. L. Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction. J. Mater. Chem. A 2018, 6, 12361–12369.

48

Sui, L. L.; Zhang, X. F.; Cheng, X. L.; Wang, P.; Xu, Y. M.; Gao, S.; Zhao, H.; Huo, L. H. Au-loaded hierarchical MoO3 hollow spheres with enhanced gas-sensing performance for the detection of BTX (benzene, toluene, and xylene) and the sensing mechanism. ACS Appl. Mater. Interfaces 2017, 9, 1661–1670.

49

Zhang, L. L.; Zhang, H. W.; Jiang, C. K.; Yuan, J.; Huang, X. Y.; Liu, P.; Feng, W. H. Z-scheme system of WO3@MoS2/CdS for photocatalytic evolution H2: MoS2 as the charge transfer mode switcher, electron-hole mediator and cocatalyst. Appl. Catal. B Environ. 2019, 259, 118073.

50

Zhu, S. M.; Zhang, Y. A.; Qian, X. J.; Wang, X. X.; Su, W. Y. Zn defect-mediated Z-scheme electron-hole separation in AgIn5S8/ZnS heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 504, 144396.

51

Zhou, P. S.; Xu, Q.; Li, H. X.; Wang, Y.; Yan, B.; Zhou, Y. C.; Chen, J. F.; Zhang, J. N.; Wang, K. X. Fabrication of two-dimensional lateral heterostructures of WS2/WO3⋅H2O through selective oxidation of monolayer WS2. Angew. Chem. , Int. Ed. 2015, 54, 15226–15230.

52

Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988–5000.

53

Guan, S. D.; Fu, X. L.; Zhang, Y.; Peng, Z. J. NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem. Sci. 2018, 9, 1574–1585.

54

Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

55

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

56

Xiong, J. H.; Liu, Y. H.; Wang, D. K.; Liang, S. J.; Wu, W. M.; Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A 2015, 3, 12631–12635.

57

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

58

Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.

59

Shen, R. C.; Ding, Y. N.; Li, S. B.; Zhang, P.; Xiang, Q. J.; Ng, Y. H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36.

60

Zhuang, T. T.; Liu, Y.; Sun, M.; Jiang, S. L.; Zhang, M. W.; Wang, X. C.; Zhang, Q.; Jiang, J.; Yu, S. H. A unique ternary semiconductor- (semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. , Int. Ed. 2015, 54, 11495–11500.

61

Xiang, X. M.; Chou, L. J.; Li, X. H. Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability. Chin. J. Catal. 2018, 39, 407–412.

62

Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931– 1936.

63

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

64

Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021, 14, 1095–1102.

65

Chu, J. Y.; Han, X. J.; Yu, Z.; Du, Y. C.; Song, B.; Xu, P. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures. ACS Appl. Mater. Interfaces 2018, 10, 20404–20411.

66

Ling, C. C.; Ye, X. J.; Zhang, J. H.; Zhang, J. F.; Zhang, S. J.; Meng, S. G.; Fu, X. L.; Chen, S. F. Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic com­pounds under visible light. Sci. Rep. 2017, 7, 27.

67

Nowak, M.; Kauch, B.; Szperlich, P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 2009, 80, 046107.

68

Li, S. S.; Wang, L.; Li, Y. D.; Zhang, L. H.; Wang, A. X.; Xiao, N.; Gao, Y. Q.; Li, N.; Song, W. Y.; Ge, L. et al. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal. B Environ. 2019, 254, 145–155.

Nano Research
Pages 985-995
Cite this article:
Wang W, Chen H, Wu J, et al. Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1−xWxS2: Highly-improved visible-light-driven H2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1−xWxS2 cocatalyst. Nano Research, 2022, 15(2): 985-995. https://doi.org/10.1007/s12274-021-3585-7
Topics:

944

Views

16

Crossref

15

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 18 January 2021
Revised: 08 May 2021
Accepted: 12 May 2021
Published: 08 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return