Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photocatalytic water splitting for hydrogen (H2) production is a green sustainable technology, in which highly-efficient steady photocatalysts are fundamentally required. In this work, unique CdS/Cd0.5Zn0.5S-Mo1−xWxS2 photocatalyst constructed by CdS hollow nano-spheres with successively surface-modified Cd0.5Zn0.5S shell and defect-rich Mo1−xWxS2 ultrathin nanosheets was reported for the first time. Interestingly, the Cd0.5Zn0.5S shell could greatly enhance the photo-stability and reduce the carrier recombination of CdS. Meanwhile, enriching active sites and accelerating charge transfer could be achieved via anchoring defect-rich Mo1−xWxS2 onto CdS/Cd0.5Zn0.5S hollow heterostructures. Specifically, the optimized CdS/Cd0.5Zn0.5S-Mo1−xWxS2 (6 h Cd0.5Zn0.5S-coating, 7 wt.% Mo1−xWxS2, x = 0.5) hybrid delivered an exceptional H2 generation rate of 215.99 mmol·g−1·h−1, which is approximately 502, 134, and 23 times that of pure CdS, CdS/Cd0.5Zn0.5S, and 3 wt.% Pt-loaded CdS/Cd0.5Zn0.5S, respectively. Remarkably, a high H2 evolution reaction (HER) apparent quantum yield (AQY) of 64.81% was obtained under 420-nm irradiation. In addition, the CdS/Cd0.5Zn0.5S-Mo1−xWxS2 was also durable for H2 production under long-term irradiation. This work provides valuable inspirations to rational design and synthesis of efficient and stable hybrid photocatalysts for solar energy conversion.
Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.
Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.
Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.
Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.
Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.
Tan, X. N.; Zhang, J. L.; Tan, D. X.; Shi, J. B.; Cheng, X. Y.; Zhang, F. Y.; Liu, L. F.; Zhang, B. X.; Su, Z. Z.; Han, B. X. Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. Nano Res. 2019, 12, 1967–1972.
Wei, Y. Z.; Wang, J. Y.; Yu, R. B.; Wan, J. W.; Wang, D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem. , Int. Ed. 2019, 58, 1422–1426.
Yuan, Y. J.; Chen, D. Q.; Yu, Z. T.; Zou, Z. G. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 11606–11630.
Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280.
Zhu, Y. X.; Jiang, X.; Lin, L.; Wang, S. H.; Chen, C. Fabrication of ZnS/CdS heterojunction by using bimetallic MOFs template for photocatalytic hydrogen generation. Chem. Res. Chin. Univ. 2020, 36, 1032–1038.
Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.
Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.
Sun, T.; Wang, C. X.; Xu, Y. X. Covalent triazine framework nanosheets for efficient energy storage and conversion. Chem. Res. Chin. Univ. 2020, 36, 640–647.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646.
Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.
Liu, M. C.; Jing, D. W.; Zhou, Z. H.; Guo, L. J. Twin-induced one- dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278.
Zhang, P.; Wang, S. B.; Guan, B. Y.; Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 2019, 12, 164–168.
Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.
Wei, Y. Z.; Yang, N. L.; Huang, K. K.; Wan, J. W.; You, F. F.; Yu, R. B.; Feng, S. H.; Wang, D. Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport. Adv. Mater. 2020, 32, 2002556.
Wei, Y. Z.; Wan, J. W.; Yang, N. L.; Yang, Y.; Ma, Y. W.; Wang, S. C.; Wang, J. Y.; Yu, R. B.; Gu, L.; Wang, L. H. et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev. 2020, 7, 1638–1646.
Xin, Y. N.; Huang, Y.; Lin, K.; Yu, Y. F.; Zhang, B. Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production. Sci. Bull. 2018, 63, 601–608.
Xing, M. Y.; Qiu, B. C.; Du, M. M.; Zhu, Q. H.; Wang, L. Z.; Zhang, J. L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1702624.
Zhang, P.; Luan, D. Y.; Lou, X. W. Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation. Adv. Mater. 2020, 32, 2004561.
Huang, L.; Wang, X. L.; Yang, J. H.; Liu, G.; Han, J. F.; Li, C. Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J. Phys. Chem. C 2013, 117, 11584–11591.
Xie, Y. P.; Yu, Z. B.; Liu, G.; Ma, X. L.; Cheng, H. M. CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ. Sci. 2014, 7, 1895–1901.
Jiang, D. C.; Sun, Z. J.; Jia, H. X.; Lu, D. P.; Du, P. W. A cocatalyst- free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 2016, 4, 675–683.
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth- abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.
Yin, Y. G.; Wei, S. T.; Zhang, L.; Guo, Z. W.; Huang, H. H.; Sai, S. R.; Wu, J. D.; Xu, Y. C.; Liu, Y.; Zheng, L. R. et al. Copper-linked 1T MoS2/Cu2O heterostructure for efficient photocatalytic hydrogen evolution. Chem. Res. Chin. Univ. 2020, 36, 1122–1127.
Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble- metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.
Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.
Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.
Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881– 17888.
Li, R. C.; Yang, L. J.; Xiong, T. L.; Wu, Y. S.; Cao, L. D.; Yuan, D. S.; Zhou, W. J. Nitrogen doped MoS2 nanosheets synthesized via a low- temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 2017, 356, 133–139.
Xin, X.; Song, Y. R.; Guo, S. H.; Zhang, Y. Z.; Wang, B. L.; Wang, Y. J.; Li, X. H. One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J. Alloys Compd. 2020, 829, 154635.
Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.
Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.
Chen, D. Y.; Ji, G.; Ding, B.; Ma, Y.; Qu, B. H.; Chen, W. X.; Lee, J. Y. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale 2013, 5, 7890–7896.
Gopannagari, M.; Kumar, D. P.; Reddy, D. A.; Hong, S.; Song, M. I.; Kim, T. K. In situ preparation of few-layered WS2 nanosheets and exfoliation into bilayers on CdS nanorods for ultrafast charge carrier migrations toward enhanced photocatalytic hydrogen production. J. Catal. 2017, 351, 153–160.
Lin, H. F.; Sun, B. W.; Wang, H.; Ruan, Q. Q.; Geng, Y. L.; Li, Y. Y.; Wu, J. K.; Wang, W. J.; Liu, J.; Wang, X. Unique 1D Cd1–xZnxS@O-MoS2/NiOx nano-hybrids: Highly efficient visible-light- driven photocatalytic hydrogen evolution via integrated structural regulation. Small 2019, 15, 1804115.
Liu, L.; Jiao, Y.; Guo, Q.; Zhao, W.; Dai, W.; Zhang, J.; Gao, C.; Yu, W.; Li, X. Influence of sodium citrate on deposition and properties of Cd1–xZnxS buffer layers by chemical bath deposition. Chalcogenide Lett. 2017, 14, 373–380.
Sun, X. S.; Luo, X.; Zhang, X. D.; Xie, J. F.; Jin, S.; Wang, H.; Zheng, X. S.; Wu, X. J.; Xie, Y. Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801.
Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.
He, Q.; Wan, Y. Y.; Zhang, Y. K.; Jiang, H. L.; Liu, H. J.; Zheng, X. S.; Chen, S. M.; Wu, X. J.; Song, L. 1T'-Mo1–xWxS2/CdS heterostructure enabling robust photocatalytic water splitting: Unveiling the interfacial charge polarization. Solar RRL 2018, 2, 1800032.
Hao, X. Q.; Wang, Y. C.; Zhou, J.; Cui, Z. W.; Wang, Y.; Zou, Z. G. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl. Catal. B Environ. 2018, 221, 302–311.
Lu, K. Q.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Earth-abundant MoS2 and cobalt phosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytic hydrogen production. Langmuir 2019, 35, 11056–11065.
Zhang, Z.; Ma, X. X.; Tang, J. L. Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction. J. Mater. Chem. A 2018, 6, 12361–12369.
Sui, L. L.; Zhang, X. F.; Cheng, X. L.; Wang, P.; Xu, Y. M.; Gao, S.; Zhao, H.; Huo, L. H. Au-loaded hierarchical MoO3 hollow spheres with enhanced gas-sensing performance for the detection of BTX (benzene, toluene, and xylene) and the sensing mechanism. ACS Appl. Mater. Interfaces 2017, 9, 1661–1670.
Zhang, L. L.; Zhang, H. W.; Jiang, C. K.; Yuan, J.; Huang, X. Y.; Liu, P.; Feng, W. H. Z-scheme system of WO3@MoS2/CdS for photocatalytic evolution H2: MoS2 as the charge transfer mode switcher, electron-hole mediator and cocatalyst. Appl. Catal. B Environ. 2019, 259, 118073.
Zhu, S. M.; Zhang, Y. A.; Qian, X. J.; Wang, X. X.; Su, W. Y. Zn defect-mediated Z-scheme electron-hole separation in AgIn5S8/ZnS heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 504, 144396.
Zhou, P. S.; Xu, Q.; Li, H. X.; Wang, Y.; Yan, B.; Zhou, Y. C.; Chen, J. F.; Zhang, J. N.; Wang, K. X. Fabrication of two-dimensional lateral heterostructures of WS2/WO3⋅H2O through selective oxidation of monolayer WS2. Angew. Chem. , Int. Ed. 2015, 54, 15226–15230.
Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988–5000.
Guan, S. D.; Fu, X. L.; Zhang, Y.; Peng, Z. J. NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem. Sci. 2018, 9, 1574–1585.
Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.
Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.
Xiong, J. H.; Liu, Y. H.; Wang, D. K.; Liang, S. J.; Wu, W. M.; Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A 2015, 3, 12631–12635.
Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.
Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.
Shen, R. C.; Ding, Y. N.; Li, S. B.; Zhang, P.; Xiang, Q. J.; Ng, Y. H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36.
Zhuang, T. T.; Liu, Y.; Sun, M.; Jiang, S. L.; Zhang, M. W.; Wang, X. C.; Zhang, Q.; Jiang, J.; Yu, S. H. A unique ternary semiconductor- (semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. , Int. Ed. 2015, 54, 11495–11500.
Xiang, X. M.; Chou, L. J.; Li, X. H. Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability. Chin. J. Catal. 2018, 39, 407–412.
Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931– 1936.
Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.
Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021, 14, 1095–1102.
Chu, J. Y.; Han, X. J.; Yu, Z.; Du, Y. C.; Song, B.; Xu, P. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures. ACS Appl. Mater. Interfaces 2018, 10, 20404–20411.
Ling, C. C.; Ye, X. J.; Zhang, J. H.; Zhang, J. F.; Zhang, S. J.; Meng, S. G.; Fu, X. L.; Chen, S. F. Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic compounds under visible light. Sci. Rep. 2017, 7, 27.
Nowak, M.; Kauch, B.; Szperlich, P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 2009, 80, 046107.
Li, S. S.; Wang, L.; Li, Y. D.; Zhang, L. H.; Wang, A. X.; Xiao, N.; Gao, Y. Q.; Li, N.; Song, W. Y.; Ge, L. et al. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal. B Environ. 2019, 254, 145–155.