Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal chalcogenide solid solution, especially ZnCdS, has been intensively investigated in photocatalytic H2 generation due to their cost-effective synthetic procedure and adjustable band structures. In this work, we report on the defect engineering of ZnCdS with surface disorder layer by simple room temperature Li-ethylenediamine (Li-EDA) treatment. Experimental results confirm the formation of unusual Zn and S dual vacancies, where rich S vacancies (VS) served as electron trapping sites, meanwhile Zn vacancies (VZn) served as hole trapping sites. The refined structure significantly facilitates the photo charge carrier transfer and improves photocatalytic properties of ZnCdS. The disordered ZnCdS shows a highest photocatalytic H2 production rate of 33.6 mmol·g−1·h−1 under visible light with superior photocatalytic stabilities, which is 7.3 times higher than pristine ZnCdS and 7 times of Pt (1 wt.%) loaded ZnCdS.
Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.
Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421–443.
Ha, E.; Lee, L. Y. S.; Wang, J. C.; Li, F. H.; Wong, K. Y.; Tsang, S. C. E. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Adv. Mater. 2014, 26, 3496–3500.
Ha, E.; Lee, L. Y. S.; Man, H. W.; Tsang, S. C. E.; Wong, K. Y. Morphology-controlled synthesis of Au/Cu2FeSnS4 core–shell nanostructures for plasmon-enhanced photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2015, 7, 9072–9077.
Ha, E.; Liu, W.; Wang, L. Y.; Man, H. W.; Hu, L. S.; Tsang, S. C. E.; Chan, C. T. L.; Kwok, W. M.; Lee, L. Y. S.; Wong, K. Y. Cu2ZnSnS4/MoS2-reduced graphene oxide heterostructure: Nanoscale interfacial contact and enhanced photocatalytic hydrogen generation. Sci. Rep. 2017, 7, 39411.
Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.
Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021, 14, 1095–1102.
Huang, D. L.; Wen, M.; Zhou, C. Y.; Li, Z. H.; Cheng, M.; Chen, S.; Xue, W. J.; Lei, L.; Yang, Y.; Xiong, W. P. et al. ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction. Appl. Catal. B: Environ. 2020, 267, 118651.
Xue, W. H.; Bai, X.; Fan, J.; Liu, E. Z. Recent progress of photocatalytic H2 evolution regarding zinc-cadmium sulfide solid solution. Chin. J. Inorg. Chem. 2020, 36, 2227–2239.
Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882–889.
Shen, C. C.; Liu, Y. N.; Zhou, X.; Guo, H. L.; Zhao, Z. W.; Liang, K.; Xu, A. W. Large improvement of visible-light photocatalytic H2-evolution based on cocatalyst-free Zn0.5Cd0.5S synthesized through a two-step process. Catal. Sci. Technol. 2017, 7, 961–967.
Zhong, W.; Huang, Y.; Wang, X. F.; Fan, J. J.; Yu, H. G. Colloidal CdS and CdZnS nanocrystal photocatalysts with massive S2−-adsorption: One-step facile synthesis and highly efficient H2-evolution performance. Chem. Commun. 2020, 56, 9316–9319.
Chen, J. M.; Chen, J. Y.; Li, Y. W. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. J. Mater. Chem. A 2017, 5, 24116–24125.
Zhong, W.; Huang, X.; Xu, Y.; Yu, H. G. One-step facile synthesis and high H2-evolution activity of suspensible CdxZn1−xS nanocrystal photocatalysts in a S2−/SO32− system. Nanoscale 2018, 10, 19418– 19426.
Zhang, C. Y.; Liu, H. H.; Wang, W. N.; Qian, H. S.; Cheng, S.; Wang, Y.; Zha, Z. B.; Zhong, Y. J.; Hu, Y. Scalable fabrication of ZnxCd1-xS double-shell hollow nanospheres for highly efficient hydrogen production. Appl. Catal. B: Environ. 2018, 239, 309–316.
Zhang, X. Y.; Zhao, Z.; Zhang, W. W.; Zhang, G. Q.; Qu, D.; Miao, X.; Sun, S. R.; Sun, Z. C. Surface defects enhanced visible light photocatalytic H2 production for Zn-Cd-S solid solution. Small 2016, 12, 793–801.
Chen, J. M.; Lv, S. M.; Shen, Z. R.; Tian, P. L.; Chen, J. Y.; Li, Y. W. Novel ZnCdS quantum dots engineering for enhanced visible-light- driven hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 13805–13814.
Li, K. Q.; Xiong, H. L.; Wang, X.; Ma, Y. L.; Gao, T. N.; Liu, Z. L.; Liu, Y. L.; Fan, M. H.; Zhang, L.; Song, S. Y. et al. Ligand-assisted coordinative self-assembly method to synthesize mesoporous ZnxCd1–xS nanospheres with nano-twin-induced phase junction for enhanced photocatalytic H2 evolution. Inorg. Chem. 2020, 59, 5063–5071.
Yu, K.; Huang, H. B.; Zeng, X. Y.; Xu, J. Y.; Yu, X. T.; Liu, H. X.; Cao, H. L.; Lü, J.; Cao, R. CdZnS nanorods with rich sulphur vacancies for highly efficient photocatalytic hydrogen production. Chem. Commun. 2020, 56, 7765–7768.
Xue, W. H.; Chang, W. X.; Hu, X. Y.; Fan, J.; Liu, E. Z. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 152–163.
Jin, Z. L.; Liu, Y.; Hao, X. Q. Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity. J. Colloid Interface Sci. 2020, 567, 357–368.
Yao, L. H.; Wei, D.; Ni, Y. M.; Yan, D. P.; Hu, C. W. Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: Highly efficient visible light-induced H2-generation. Nano Energy 2016, 26, 248–256.
Ran, J. R.; Wang, X. L.; Zhu, B. C.; Qiao, S. Z. Strongly interactive 0D/2D hetero-structure of a ZnxCd1−xS nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H2 production. Chem. Commun. 2017, 53, 9882–9885.
Li, Y. Q.; Wan, S. P.; Lin, C.; Gao, Y. J.; Lu, Y.; Wang, L. Y.; Zhang, K. Engineering of 2D/2D MoS2/CdxZn1−xS photocatalyst for solar H2 evolution coupled with degradation of plastic in alkaline solution. Solar RRL 2020, 2000427.
Li, Y. Y.; Sun, B. W.; Lin, H. F.; Ruan, Q. Q.; Geng, Y. L.; Liu, J.; Wang, H.; Yang, Y.; Wang, L.; Chiu Tam, K. Efficient visible-light induced H2 evolution from t-CdxZn1-xS/defective MoS2 nano-hybrid with both bulk twinning homojunctions and interfacial heterostructures. Appl. Catal. B: Environ. 2020, 267, 118702.
Ahmad, M.; Quan, X.; Chen, S.; Yu, H. T.; Zeng, Z. X. Operating redox couple transport mechanism for enhancing photocatalytic H2 generation of Pt and CrOx-decorated ZnCdS nanocrystals. Appl. Catal. B: Environ. 2021, 283, 119601.
Min, Y.; Im, E.; Hwang, G. T.; Kim, J. W.; Ahn, C. W.; Choi, J. J.; Hahn, B. D.; Choi, J. H.; Yoon, W. H.; Park, D. S. et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Res. 2019, 12, 1750–1769.
Hong, M.; Shi, J. P.; Huan, Y. H.; Xie, Q.; Zhang, Y. F. Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Res. 2019, 12, 2140–2149.
Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.
Ai, M.; Zhang, J. W.; Wu, Y. W.; Pan, L.; Shi, C. X.; Zou, J. J. Role of vacancies in photocatalysis: A review of recent progress. Chem. Asian J. 2020, 15, 3599–3619.
Zhang, Y. C.; Afzal, N.; Pan, L.; Zhang, X. W.; Zou, J. J. Structure- activity relationship of defective metal-based photocatalysts for water splitting: Experimental and theoretical perspectives. Adv. Sci. 2019, 6, 1900053.
Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.
Wang, H. M.; Xia, Y. G.; Li, H. P.; Wang, X.; Yu, Y.; Jiao, X. L.; Chen, D. R. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat. Commun. 2020, 11, 3078.
Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.
Hu, L. S.; Li, Y.; Zheng, W. R.; Peng, Y. K.; Tsang, S. C. E.; Lee, L. Y. S.; Wong, K. Y. Blue ordered/disordered Janus-type TiO2 nanoparticles for enhanced photocatalytic hydrogen generation. J. Mater. Chem. A 2020, 8, 22828–22839.
Zhang, K.; Kim, J. K.; Park, B.; Qian, S. F.; Jin, B. J.; Sheng, X. W.; Zeng, H. B.; Shin, H.; Oh, S. H.; Lee, C. L. et al. Defect-induced epitaxial growth for efficient solar hydrogen production. Nano Lett. 2017, 17, 6676–6683.
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.
Chen, D. M.; Wang, Z. H.; Ren, T. Z.; Ding, H.; Yao, W. Q.; Zong, R. L.; Zhu, Y. F. Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 2014, 118, 15300–15307.
Wang, L. Y.; Tsang, C. S.; Liu, W.; Zhang, X. D.; Zhang, K.; Ha, E. N.; Kwok, W. M.; Park, J. H.; Lee, L. Y. S.; Wong, K. Y. Disordered layers on WO3 nanoparticles enable photochemical generation of hydrogen from water. J. Mater. Chem. A 2019, 7, 221–227.
Ma, M.; Zhang, K.; Li, P.; Jung, M. S.; Jeong, M. J.; Park, J. H. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew. Chem., Int. Ed. 2016, 55, 11819–11823.
Huang, H. B.; Fang, Z. B.; Yu, K.; Lü, J.; Cao, R. Visible-light-driven photocatalytic H2 evolution over CdZnS nanocrystal solid solutions: Interplay of twin structures, sulfur vacancies and sacrificial agents. J. Mater. Chem. A 2020, 8, 3882–3891.
Liu, M. C.; Wang, L. Z.; Lu, G.; Yao, X. D.; Guo, L. J. Twins in Cd1−xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 2011, 4, 1372–1378.
Abideen, Z. U.; Teng, F. Effect of alkaline treatment on photochemical activity and stability of Zn0.3Cd0.7S. Appl. Surf. Sci. 2019, 465, 459–469.
Huang, M. N.; Yu, J. H.; Deng, C. S.; Huang, Y. S.; Fan, M. G.; Li, B.; Tong, Z. F.; Zhang, F. Y.; Dong, L. H. 3D nanospherical CdxZn1−x/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance. Appl. Surf. Sci. 2016, 365, 227–239.
Zhang, K.; Wang, L. Y.; Kim, J. K.; Ma, M.; Veerappan, G.; Lee, C. L.; Kong, K. J.; Lee, H.; Park, J. H. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 2016, 9, 499–503.
Vaquero, F.; Navarro, R. M.; Fierro, J. L. G. Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method. Appl. Catal. B: Environ. 2017, 203, 753–767.
Wu, S. M.; Liu, X. L.; Lian, X. L.; Tian, G.; Janiak, C.; Zhang, Y. X.; Lu, Y.; Yu, H. Z.; Hu, J.; Wei, H. et al. Homojunction of oxygen and titanium vacancies and its interfacial n–p effect. Adv. Mater. 2018, 30, 1802173.
Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. Nanocrystalline ZnO(Ga): Paramagnetic centers, surface acidity and gas sensor properties. Sens. Actuators B Chem. 2013, 182, 555–564.
Zhu, Q. H.; Xu, Z. H.; Yi, Q. Y.; Nasir, M.; Xing, M. Y.; Qiu, B. C.; Zhang, J. L. Prolonged electron lifetime in sulfur vacancy-rich ZnCdS nanocages by interstitial phosphorus doping for photocatalytic water reduction. Mater. Chem. Front. 2020, 4, 3234–3239.
Lu, F.; Zhou, M.; Li, W. R.; Weng, Q. H.; Li, C. L.; Xue, Y. M.; Jiang, X. F.; Zeng, X. H.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323.
He, Y. Q.; Rao, H.; Song, K. P.; Li, J. X.; Yu, Y.; Lou, Y.; Li, C. G.; Han, Y.; Shi, Z.; Feng, S. H. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29, 1905153.
Shi, X. J.; Zhang, K.; Park, J. H. Understanding the positive effects of (Co–Pi) co-catalyst modification in inverse-opal structured α-Fe2O3-based photoelectrochemical cells. Int. J. Hydrogen Energy 2013, 38, 12725–12732.
Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 2012, 100, 223903.
Ng, B. J.; Putri, L. K.; Kong, X. Y.; Shak, K. P. Y.; Pasbakhsh, P.; Chai, S. P.; Mohamed, A. R. Sub-2 nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible- light-driven photocatalytic H2 evolution. Appl. Catal. B: Environ. 2018, 224, 360–367.
Becker, W. G.; Bard, A. J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 1983, 87, 4888–4893.
Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B. Self-assembled growth of ZnS nanobelt networks. J. Phys. Chem. B 2004, 108, 936–938.
Li, Y. Y.; Wu, Y. Q. Transparent and luminescent ZnS ceramics consolidated by vacuum hot pressing method. J. Am. Ceram. Soc. 2015, 98, 2972–2975.
He, J.; Wang, J. Q.; Chen, Y. J.; Zhang, J. P.; Duan, D. L.; Wang, Y.; Yan, Z. Y. A dye-sensitized Pt@UiO-66(Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chem. Commun. 2014, 50, 7063–7066.
Long, J. L.; Wang, S. B.; Ding, Z. X.; Wang, S. C.; Zhou, Y. G.; Huang, L.; Wang, X. X. Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 2012, 48, 11656–11658.
Abdi, F. F.; Han, L. B.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.
Meng, L. X.; Rao, D. W.; Tian, W.; Cao, F. R.; Yan, X. H.; Li, L. Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance. Angew. Chem., Int. Ed. 2018, 57, 16882–16887.
Feng, S. J.; Wang, T.; Liu, B.; Hu, C. L.; Li, L. L.; Zhao, Z. J.; Gong, J. L. Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew. Chem., Int. Ed. 2020, 59, 2044–2048.
Lian, Z. C.; Sakamoto, M.; Kobayashi, Y.; Tamai, N.; Ma, J.; Sakurai, T.; Seki, S.; Nakagawa, T.; Lai, M. W.; Haruta, M. et al. Anomalous photoinduced hole transport in type I core/mesoporous-shell nanocrystals for efficient photocatalytic H2 evolution. ACS Nano 2019, 13, 8356–8363.