AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody

Depeng Rao1,§Kainan Mei1,§Tianhao Yan1Yu Wang1Wenjie Wu1Ye Chen1Jianye Wang2Qingchuan Zhang1( )Shangquan Wu1( )
CAS Key Laboratory of Mechanical Behavior and Design of Material Department of Modern Mechanics University of Science and Technology of China Hefei 230027 China
Reproductive Medicine Center Department of Obstetrics and Gynecology First Affiliated Hospital of Anhui Medical University Hefei 230022 China

§Depeng Rao and Kainan Mei contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Early cancer diagnosis requires ultrasensitive detection of tumor markers in blood. To this end, we develop a novel microcantilever immunosensor using nanobodies (Nbs) as receptors. As the smallest antibody (Ab) entity comprising an intact antigen-binding site, Nbs achieve dense receptor layers and short distances between antigen-binding regions and sensor surfaces, which significantly elevate the generation and transmission of surface stress. Owing to the inherent thiol group at the C-terminus, Nbs are covalently immobilized on microcantilever surfaces in directed orientation via one-step reaction, which further enhances the stress generation. For microcantilever-based nanomechanical sensor, these advantages dramatically increase the sensor sensitivity. Thus, Nb-functionalized microcantilevers can detect picomolar concentrations of tumor markers with three orders of magnitude higher sensitivity, when compared with conventional Ab-functionalized microcantilevers. This proof-of-concept study demonstrates an ultrasensitive, label-free, rapid, and low-cost method for tumor marker detection. Moreover, interestingly, we find Nb inactivation on sensor interfaces when using macromolecule blocking reagents. The adsorption-induced inactivation is presumably caused by the change of interfacial properties, due to binding site occlusion upon complex coimmobilization formations. Our findings are generalized to any coimmobilization methodology for Nbs and, thus, for the construction of high-performance immuno-surfaces.

Electronic Supplementary Material

Download File(s)
12274_2021_3588_MOESM1_ESM.pdf (1.4 MB)

References

1

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30.

2

Chen, X. D.; Gole, J.; Gore, A.; He, Q. Y.; Lu, M.; Min, J.; Yuan, Z. Y.; Yang, X. R.; Jiang, Y. F.; Zhang, T. J. et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 2020, 11, 3475.

3

Rashkin, S. R.; Graff, R. E.; Kachuri, L.; Thai, K. K.; Alexeeff, S. E.; Blatchins, M. A.; Cavazos, T. B.; Corley, D. A.; Emami, N. C.; Hoffman, J. D. et al. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat. Commun. 2020, 11, 4423.

4

Zhou, S. S.; Hu, T.; Han, G. H.; Wu, Y. F.; Hua, X.; Su, J.; Jin, W. W.; Mou, Y. P.; Mou, X. Z.; Li, Q. et al. Accurate cancer diagnosis and stage monitoring enabled by comprehensive profiling of different types of exosomal biomarkers: Surface proteins and miRNAs. Small 2020, 16, 2004492.

5

Pan, P. T.; Wang, Y. C.; Zhu, Y.; Gao, X.; Ju, Z. G.; Qiu, P. L.; Wang, L.; Mao, C. B. Nontoxic virus nanofibers improve the detection sensitivity for the anti-p53 antibody, a biomarker in cancer patients. Nano Res. 2015, 8, 3562–3570.

6

Hanash, S. M.; Pitteri, S. J.; Faca, V. M. Mining the plasma proteome for cancer biomarkers. Nature 2008, 452, 571–579.

7

Preston, M. A.; Batista, J. L.; Wilson, K. M.; Carlsson, S. V.; Gerke, T.; Sjoberg, D. D.; Dahl, D. M.; Sesso, H. D.; Feldman, A. S.; Gann, P. H. et al. Baseline prostate-specific antigen levels in midlife predict lethal prostate cancer. J. Clin. Oncol. 2016, 34, 2705–2711.

8

Kosaka, P. M.; Pini, V.; Ruz, J. J.; da Silva, R. A.; González, M. U.; Ramos, D.; Calleja, M.; Tamayo, J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 2014, 9, 1047–1053.

9

Joo, J.; Kwon, D.; Yim, C.; Jeon, S. Highly sensitive diagnostic assay for the detection of protein biomarkers using microresonators and multifunctional nanoparticles. ACS Nano 2012, 6, 4375–4381.

10

Wang, S.; Zhang, L. Q.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C. Y.; Teng, I. T.; Shi, M. L. et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 2017, 11, 3943–3949.

11

Smirnov, I.; Sibgatullina, R.; Urano, S.; Tahara, T.; Ahmadi, P.; Watanabe, Y.; Pradipta, A. R.; Kurbangalieva, A.; Tanaka, K. A strategy for tumor targeting by higher-order glycan pattern recognition: Synthesis and in vitro and in vivo properties of glycoalbumins conjugated with four different N-glycan molecules. Small 2020, 16, 2004831.

12

Deng, Z. A.; Zhao, Z.; Ning, B.; Basilio, J.; Mann, K.; Fu, J.; Gu, Y. J.; Ye, Y. Q.; Wu, X. F.; Fan, J. et al. Nanotrap-enabled quantification of KRAS-induced peptide hydroxylation in blood for cancer early detection. Nano Res. 2019, 12, 1445–1452.

13

Lu, L. Y.; Tu, D. T.; Liu, Y.; Zhou, S. Y.; Zheng, W.; Chen, X. Y. Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes. Nano Res. 2018, 11, 264–273.

14

Tamayo, J.; Kosaka, P. M.; Ruz, J. J.; San Paulo, Á.; Calleja, M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 2013, 42, 1287–1311.

15

Wu, S. Q.; Liu, X. L.; Zhou, X. R.; Liang, X. M.; Gao, D. Y.; Liu, H.; Zhao, G.; Zhang, Q. C.; Wu, X. P. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation. Biosens. Bioelectron. 2016, 77, 164–173.

16

Villalba, M. I.; Stupar, P.; Chomicki, W.; Bertacchi, M.; Dietler, G.; Arnal, L.; Vela, M. E.; Yantorno, O.; Kasas, S. Nanomotion detection method for testing antibiotic resistance and susceptibility of slow-growing bacteria. Small 2018, 14, 1702671.

17

Sushko, M. L.; Harding, J. H.; Shluger, A. L.; McKendry, R. A.; Watari, M. Physics of nanomechanical biosensing on cantilever arrays. Adv. Mater. 2008, 20, 3848–3853.

18

Watari, M.; Galbraith, J.; Lang, H. P.; Sousa, M.; Hegner, M.; Gerber, C.; Horton, M. A.; McKendry, R. A. Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 2007, 129, 601–609.

19

Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, C. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat. Nanotechnol. 2013, 8, 125–129.

20

Patil, S. B.; Vögtli, M.; Webb, B.; Mazza, G.; Pinzani, M.; Soh, Y. A.; McKendry, R. A.; Ndieyira, J. W. Decoupling competing surface binding kinetics and reconfiguration of receptor footprint for ultrasensitive stress assays. Nat. Nanotechnol. 2015, 10, 899–907.

21

Etayash, H.; Khan, M. F.; Kaur, K.; Thundat, T. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat. Commun. 2016, 7, 12947.

22

Longo, G.; Alonso-Sarduy, L.; Rio, L. M.; Bizzini, A.; Trampuz, A.; Notz, J.; Dietler, G.; Kasas, S. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat. Nanotechnol. 2013, 8, 522–526.

23

Li, C.; Ma, X. X.; Guan, Y. X.; Tang, J. L.; Zhang, B. L. Microcantilever array biosensor for simultaneous detection of carcinoembryonic antigens and α-fetoprotein based on real-time monitoring of the profile of cantilever. ACS Sens. 2019, 4, 3034–3041.

24

Loo, L.; Capobianco, J. A.; Wu, W.; Gao, X. T.; Shih, W. Y.; Shih, W. H.; Pourrezaei, K.; Robinson, M. K.; Adams, G. P. Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal. Chem. 2011, 83, 3392–3397.

25

Capobianco, J. A.; Shih, W. Y.; Adams, G. P.; Shih, W. H. Label-free Her2 detection and dissociation constant assessment in diluted human serum using a longitudinal extension mode of a piezoelectric microcantilever sensor. Sens. Actuators B Chem. 2011, 160, 349–356.

26

Wu, G. H.; Ji, H. F.; Hansen, K.; Thundat, T.; Datar, R.; Cote, R.; Hagan, M. F.; Chakraborty, A. K.; Majumdar, A. Origin of nano­mechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA 2001, 98, 1560–1564.

27

Wu, S. Q.; Nan, T. G.; Xue, C. G.; Cheng, T.; Liu, H.; Wang, B. M.; Zhang, Q. H.; Wu, X. P. Mechanism and enhancement of the surface stress caused by a small-molecule antigen and antibody binding. Biosens. Bioelectron. 2013, 48, 67–74.

28

Backmann, N.; Zahnd, C.; Huber, F.; Bietsch, A.; Pluckthun, A.; Lang, H. P.; Güntherodt, H. J.; Hegner, M.; Gerber, C. A label-free immunosensor array using single-chain antibody fragments. Proc. Natl. Acad. Sci. USA 2005, 102, 14587–14592.

29

Wu, S. Q.; Liu, H.; Liang, X. M.; Wu, X. P.; Wang, B. M.; Zhang, Q. C. Highly sensitive nanomechanical immunosensor using half antibody fragments. Anal. Chem. 2014, 86, 4271–4277.

30

Grogan, C.; Florea, L.; Koprivica, S.; Scarmagnani, S.; O'Neill, L.; Lyng, F.; Pedreschi, F.; Benito-Lopez, F.; Raiteri, R. Microcantilever arrays functionalised with spiropyran photoactive moieties as systems to measure photo-induced surface stress changes. Sens. Actuators B Chem. 2016, 237, 479–486.

31

Wu, S. Q.; Liu, H.; Cheng, T.; Zhou, X. R.; Wang, B. M.; Zhang, Q. C.; Wu, X. P. Highly sensitive nanomechanical assay for the stress transmission of carbon chain. Sens. Actuators B Chem. 2013, 186, 353–359.

32

Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 2013, 82, 775–797.

33

McMahon, C.; Baier, A. S.; Pascolutti, R.; Wegrecki, M.; Zheng, S. D.; Ong, J. X.; Erlandson, S. C.; Hilger, D.; Rasmussen, S. G. F.; Ring, A. M. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 2018, 25, 289–296.

34

Aravanis, A. M.; Lee, M.; Klausner, R. D. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell 2017, 168, 571–574.

35

Wu, G. H.; Datar, R. H.; Hansen, K. M.; Thundat, T.; Cote, R. J.; Majumdar, A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 2001, 19, 856–860.

36

Zhang, M. M.; Li, G. H.; Zhou, Q.; Pan, D.; Zhu, M.; Xiao, R. Y.; Zhang, Y. J.; Wu, G. Q.; Wan, Y. K.; Shen, Y. F. Boosted electrochemical immunosensing of genetically modified crop markers using nanobody and mesoporous carbon. ACS Sens. 2018, 3, 684–691.

37

Custódio, T. F.; Das, H.; Sheward, D. J.; Hanke, L.; Pazicky, S.; Pieprzyk, J.; Sorgenfrei, M.; Schroer, M. A.; Gruzinov, A. Y.; Jeffries, C. M. et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat. Commun. 2020, 11, 5588.

38

Wang, Y. C.; Liu, B. Y.; Zhao, X. A.; Zhang, X. H.; Miao, Y. C.; Yang, N.; Yang, B.; Zhang, L. Q.; Kuang, W. J.; Li, J. et al. Turning a native or corroded mg alloy surface into an anti-corrosion coating in excited CO2. Nat. Commun. 2018, 9, 4058.

39

Yoshimoto, K.; Nishio, M.; Sugasawa, H.; Nagasaki, Y. Direct observation of adsorption-induced inactivation of antibody fragments surrounded by mixed-peg layer on a gold surface. J. Am. Chem. Soc. 2010, 132, 7982–7989.

Nano Research
Pages 1003-1012
Cite this article:
Rao D, Mei K, Yan T, et al. Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody. Nano Research, 2022, 15(2): 1003-1012. https://doi.org/10.1007/s12274-021-3588-4
Topics:

1300

Views

19

Crossref

20

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 09 March 2021
Revised: 06 May 2021
Accepted: 12 May 2021
Published: 29 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return