Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Achieving large luminescence dissymmetry factors (glum) is challenging in the research field of circularly polarized luminescence (CPL). While various approaches have been developed to construct organic systems with CPL activity, there is still a lack of effective methods for fabricating CPL active inorganic materials. Herein, we propose an approach for endowing upconversion nanoparticles (UCNPs) and perovskite nanocrystal (PKNC) hybrid nanomaterials with upconverted circularly polarized luminescence (UC-CPL) activity. Chiral cesium lead bromides (CsPbBr3) PKNCs were synthesized by a chiral-ligand-assistant method. Meanwhile, UCNP could be embedded into the chiral PKNC, enabling a photon upconvesion feature to the PKNC. The embedded UCNPs in PKNCs were confirmed by electron tomography. Consequently, various CPL activities, including prompt CPL, UC-CPL, and energy transfer enhanced circularly polarized luminescence (ET-CPL), were realized. The chiral perovskite nanocrystals could reabsorb the chiral energy generated from UCNPs, showing energy transfer enhanced CPL activity with four times magnification of the circular polarization. These findings provide a meaningful strategy for designing chiral photon upconversion inorganic nanomaterials with highly efficient UC-CPL activity.
Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331–1343.
Zhao, T. H.; Han, J. L.; Duan, P. F.; Liu, M. H. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical. Acc. Chem. Res. 2020, 53, 1279–1292.
Han, J. M.; Guo, S.; Lu, H.; Liu, S. J; Zhao, Q.; Huang, W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 2018, 6, 1800538.
Muller, G. Luminescent chiral lanthanide(III) complexes as potential molecular probes. Dalton Trans. 2009, 44, 9692–9707.
Yang, Y.; da Costa, R. C.; Fuchter, M. J.; Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics. 2013, 7, 634–638.
Li, W.; Chen, Z. J.; Yu, H. P.; Li, J.; Liu, S. X. Wood-derived carbon materials and light-emitting materials. Adv. Mater., in press, DOI: 10.1002/adma.202000596.
Abdul Rahim, N. A.; Fujiki, M. Aggregation-induced scaffolding: Photoscissable helical polysilane generates circularly polarized luminescent polyfluorene. Polym. Chem. 2016, 7, 4618–4629.
Zinna, F.; Giovanella, U.; Di Bari, L. Highly circularly polarized electroluminescence from a chiral europium complex. Adv. Mater. 2015, 27, 1791–1795.
He, C. L.; Yang, G.; Kuai, Y.; Shan, S. Z.; Yang, L.; Hu, J. G.; Zhang, D. G.; Zhang, Q. J.; Zou, G. Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light. Nat. Commun. 2018, 9, 5117.
Zhang, J.; Feng, W. C.; Zhang, H. X.; Wang, Z. L.; Calcaterra, H. A.; Yeom, B.; Hu, P. A.; Kotov, N. A. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres. Nat. Commun. 2016, 7, 10701.
Sánchez-Carnerero, E.; Agarrabeitia, A. R.; Moreno, F.; Maroto, B. L.; Muller, G.; Ortiz, M. J.; de la Moya, S. Circularly polarized luminescence from simple organic molecules. Chem. Eur. J. 2015, 21, 13488–13500.
Shen, C. S.; Gan, F. W.; Zhang, G. L.; Ding, Y. L.; Wang, J. H.; Wang, R. B.; Crassous, J.; Qiu, H. B. Helicene-derived aggregation- induced emission conjugates with highly tunable circularly polarized luminescence. Mater. Chem. Front. 2020, 4, 837–844.
Goto, T.; Okazaki, Y.; Ueki, M.; Kuwahara, Y.; Takafuji, M.; Oda, R.; Ihara, H. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates. Angew. Chem. , Int. Ed. 2017, 56, 2989–2993.
Xu, M. C.; Wu, X. Y.; Yang, Y.; Ma, C. H.; Li, W.; Yu, H. P.; Chen, Z. J.; Li, J.; Zhang, K.; Liu, S. X. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. ACS Nano 2020, 14, 11130–11139.
Kawai, T.; Kawamura, K.; Tsumatori, H.; Ishikawa, M.; Naito, M.; Fujiki, M.; Nakashima, T. Circularly polarized luminescence of a fluorescent chiral binaphtylene-perylenebiscarboxydiimide dimer. ChemPhysChem 2007, 8, 1465–1468.
Li, F.; Wang, Y. X.; Wang, Z. Y.; Cheng, Y. X.; Zhu, C. J. Red colored CPL emission of chiral 1, 2-DACH-based polymers via chiral transfer of the conjugated chain backbone structure. Polym. Chem. 2015, 6, 6802–6805.
Roose, J.; Tang, B. Z.; Wong, K. S. Circularly-polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small 2016, 12, 6495–6512.
Meng, F. D.; Li, Y. Z.; Zhang, W. J.; Li, S. H.; Quan, Y. W.; Cheng, Y. X. Circularly polarized luminescence based chirality transfer of the chiral BINOL moiety via rigid π-conjugation chain backbone structures. Polym. Chem. 2017, 8, 1555–1561.
Cheng, J. J.; Hao, J. J.; Liu, H. C.; Li, J. G.; Li, J. Z.; Zhu, X.; Lin, X. D.; Wang, K.; He, T. C. Optically active CdSe-Dot/Cds-Rod nanocrystals with induced chirality and circularly polarized luminescence. ACS Nano 2018, 12, 5341–5350.
Tohgha, U.; Deol, K. K.; Porter, A. G.; Bartko, S.; Choi, J. K.; Leonard, B. M.; Varga, K.; Kubelka, J.; Muller, G.; Balaz, M. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano 2013, 7, 11094–11102.
Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. G. et al. Optically active nanostructured ZnO films. Angew. Chem. , Int. Ed. 2015, 54, 15170–15175.
Shi, L.; Zhu, L. Y.; Guo, J.; Zhang, L. J.; Shi, Y. N.; Zhang, Y.; Hou, K.; Zheng, Y. L.; Zhu, Y. F.; Lv, J. W. et al. Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem. , Int. Ed. 2017, 56, 15397–15401.
Kumar, J.; Kawai, T.; Nakashima, T. Circularly polarized luminescence in chiral silver nanoclusters. Chem. Commun. 2017, 53, 1269–1272.
Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Li, H. Y.; Li, S. J.; Zhao, X. L.; Zang, S. Q. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem. , Int. Ed. 2020, 59, 10052–10058.
Long, G. K.; Sabatini, R.; Saidaminov, M. I.; Lakhwani, G.; Rasmita, A.; Liu, X. G.; Sargent, E. H.; Gao, W. B. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 2020, 5, 423–439.
Sugimoto, M.; Liu, X. L.; Tsunega, S.; Nakajima, E.; Abe, S.; Nakashima, T.; Kawai, T.; Jin, R. H. Circularly polarized luminescence from inorganic materials: Encapsulating guest lanthanide oxides in chiral silica hosts. Chem. Eur. J. 2018, 24, 6519–6524.
Ogawa, T.; Yanai, N.; Monguzzi, A.; Kimizuka, N. Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 2015, 5, 10882.
Cruz, C. M.; Márquez, I.; Mariz, I. F. A.; Blanco, V.; Sánchez- Sánchez, C.; Sobrado, J. M.; Martín-Gago, J. A.; Cuerva, J. M.; Maçôas, E.; Campaña, A. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence. Chem. Sci. 2018, 9, 3917–3924.
Han, J. L.; Duan, P. F.; Li, X. G.; Liu, M. H. Amplification of circularly polarized luminescence through triplet–triplet annihilation- based photon upconversion. J. Am. Chem. Soc. 2017, 139, 9783–9786.
Jin, X.; Sang, Y. T.; Shi, Y. H.; Li, Y. G.; Zhu, X. F.; Duan, P. F.; Liu, M. H. Optically active upconverting nanoparticles with induced circularly polarized luminescence and enantioselectively triggered photopolymerization. ACS Nano 2019, 13, 2804–2811.
Li, W.; Xu, M. C.; Ma, C. H.; Liu, Y. S.; Zhou, J.; Chen, Z. J.; Wang, Y. G.; Yu, H. P.; Li, J.; Liu, S. X. Tunable upconverted circularly polarized luminescence in cellulose nanocrystal based chiral photonic films. ACS Appl. Mater. Interfaces 2019, 11, 23512–23519.
Rokade, B. V.; Guiry, P. J. Axially chiral P, N-ligands: Some recent twists and turns. ACS Catal. 2018, 8, 624–643.
Chen, W. J.; Zhang, S.; Zhou, M. H.; Zhao, T. H.; Qin, X. J.; Liu, X. F.; Liu, M. H.; Duan, P. F. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 3290–3295.
Yang, D.; Duan, P. F.; Zhang, L.; Liu, M. H. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 2017, 8, 15727.
Yang, X. F.; Zhou, M. H.; Wang, Y. F.; Duan, P. F. Electric-field- regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap. Adv. Mater. 2020, 32, 2000820.
Zhang, S. W.; Wang, Y. X.; Meng, F. D.; Dai, C. H.; Cheng, Y. X.; Zhu, C. J. Circularly polarized luminescence of AIE-active chiral O-BODIPYs induced via intramolecular energy transfer. Chem. Commun. 2015, 51, 9014–9017.
Nishikawa, T.; Nagata, Y.; Suginome, M. Poly(quinoxaline-2, 3-diyl) as a multifunctional chiral scaffold for circularly polarized luminescent materials: Color tuning, energy transfer, and switching of the CPL handedness. ACS Macro Lett. 2017, 6, 431–435.
Wade, J.; Brandt, J. R.; Reger D.; Zinna, F.; Amsharov, K. Y.; Jux, N.; Andrews D. L.; Fuchter, M. J. 500-Fold amplification of small molecule circularly polarised luminescence through circularly polarised FRET. Angew. Chem. , Int. Ed. 2021, 60, 222–227.
Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater. 2020, 32, 1900110.
Steinberg, I. Z.; Ehrenberg, B. A theoretical evaluation of the effect of photoselection on the measurement of the circular polarization of luminescence. J. Chem. Phys. 1974, 61, 3382–3386.
Zheng, W.; Huang, P.; Gong, Z. L.; Tu, D. T.; Xu, J.; Zou, Q. L.; Li, R. F.; You, W. W.; Bünzli, J. C.; Chen, X. Y. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun. 2018, 9, 3462.
Zeng, M.; Singh, S.; Hens, Z.; Liu, J.; Artizzu, F.; Van Deun, R. Strong upconversion emission in CsPbBr3 perovskite quantum dots through efficient BaYF5: Yb, Ln sensitization. J. Mater. Chem. C 2019, 7, 2014–2021.
Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. , Int. Ed. 2016, 55, 13887–13892.
Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922–4928.
He, T. C.; Li, J. Z.; Li, X. R.; Ren, C.; Luo, Y.; Zhao, F. H.; Chen, R.; Lin, X. D.; Zhang, J. M. Spectroscopic studies of chiral perovskite nanocrystals. Appl. Phys. Lett. 2017, 111, 151102.
Tsunega, S.; Jin, R. H.; Nakashima, T.; Kawai, T. Transfer of chiral information from silica hosts to achiral luminescent guests: A simple approach to accessing circularly polarized luminescent systems. ChemPlusChem 2020, 85, 619–626.
Yao, D. D.; Murata, H.; Tsunega, S.; Jin, R. H. Chiral SiO2 and Ag@SiO2 materials templated by complexes consisting of comblike polyethyleneimine and tartaric acid. Chem. Eur. J. 2015, 21, 15667– 15675.
Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self- assembled systems. Chem. Rev. 2015, 115, 7304–7397.
Nieto-Vesperinas, M. Fundamentals and model of resonance helicity and energy transfer between two magnetoelectric chiral particles. Phys. Rev. A 2019, 100, 023812.
Andrews, D. L. Chirality in fluorescence and energy transfer. Methods Appl. Fluoresc. 2019, 7, 032001.
Long, G. K.; Jiang, C. Y.; Sabatini, R.; Yang, Z. Y.; Wei, M. Y.; Quan, L. N.; Liang, Q. M.; Rasmita, A.; Askerka, M.; Walters, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 2018, 12, 528–533.
Zhao, Z. X.; Shen, J. W.; Wang, M. Simultaneous imaging of latent fingerprint and quantification of nicotine residue by NaYF4: Yb/Tm Upconversion nanoparticles. Nanotechnology 2020, 31, 145504.
Ding, Y. J.; Zhu, H.; Zhang, X. X.; Gao, J. G.; Abdel-Halim, E. S.; Jiang, L. P.; Zhu, J. J. An upconversion nanocomposite for fluorescence resonance energy transfer based cholesterol-sensing in human serum. Nanoscale 2014, 6, 14792–14798.