AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Hollow structures as drug carriers: Recognition, response, and release

Decai Zhao1,2Nailiang Yang1,2( )Lekai Xu1,3Jiang Du3Yang Yang4,5( )Dan Wang1,2( )
State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
Green Catalysis Center, and College of Chemistry, School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
School of Materials Science and EngineeringTongji UniversityShanghai201804China
Show Author Information

Graphical Abstract

Abstract

Hollow structures have demonstrated great potential in drug delivery owing to their privileged structure, such as high surface- to-volume ratio, low density, large cavities, and hierarchical pores. In this review, we provide a comprehensive overview of hollow structured materials applied in targeting recognition, smart response, and drug release, and we have addressed the possible chemical factors and reactions in these three processes. The advantages of hollow nanostructures are summarized as follows: hollow cavity contributes to large loading capacity; a tailored structure helps controllable drug release; variable compounds adapt to flexible application; surface modification facilitates smart responsive release. Especially, because the multiple physical barriers and chemical interactions can be induced by multishells, hollow multishelled structure is considered as a promising material with unique loading and releasing properties. Finally, we conclude this review with some perspectives on the future research and development of the hollow structures as drug carriers.

References

1

Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501.

2

Cai, W.; Wang, J. Q.; Chu, C. C.; Chen, W.; Wu, C. S.; Liu, G. Metal– organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2019, 6, 1801526.

3

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

4

Wu, M. X.; Yang, Y. W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

5

Sharma, H.; Kumar, K.; Choudhary, C.; Mishra, P. K.; Vaidya, B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells, Nanomed. Biotechnol. 2016, 44, 672–679.

6

Liu, Y. B.; Castro Bravo, K. M.; Liu, J. W. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz. 2021, 6, 78–94.

7

Yang, B.; Zhou, S.; Zeng, J.; Zhang, L. P.; Zhang, R. H.; Liang, K.; Xie, L.; Shao, B.; Song, S. L.; Huang, G. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019.

8

Wu, J.; Zhu, Y. J.; Cao, S. W.; Chen, F. Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: Surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity. Adv. Mater. 2010, 22, 749–753.

9

Folkman, J.; Long, D. M. The use of silicone rubber as a carrier for prolonged drug therapy. J. Sur. Res. 1964, 4, 139–142.

10

Iwanaga, H.; Shibata, N. Growth mechanism of hollow ZnO crystals from ZnSe. J. Cryst. Growth 1974, 24–25, 357–361.

11

Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

12

Qu, H. Q.; Ma, Y. R.; Gou, Z. L.; Li, B.; Liu, Y. R.; Zhang, Z. X.; Wang, L. Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 572, 83–90.

13

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

14

Zhang, J.; Karmakar, S.; Yu, M. H.; Mitter, N.; Zou, J.; Yu, C. Z. Synthesis of silica vesicles with controlled entrance size for high loading, sustained release, and cellular delivery of Therapeutical proteins. Small 2014, 10, 5068–5076.

15

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile Nanoemulsion assembly approach to synthesize functional Mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

16

Wang, W.; Tang, M. H.; Zheng, Z. Y.; Chen, S. L. Alkaline polymer membrane-based ultrathin, flexible, and high-performance solid-state Zn-Air Battery. Adv. Energy Mater. 2019, 9, 1803628.

17

Li, N.; Zhang, Q.; Liu, J.; Joo, J.; Lee, A.; Gan, Y.; Yin, Y. D. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem. Commun. 2013, 49, 5135–5137.

18

Gao, M.; Zeng, J.; Liang, K.; Zhao, D. Y.; Kong, B. Interfacial assembly of mesoporous silica-based optical heterostructures for sensing applications. Adv. Funct. Mater. 2020, 30, 1906950.

19

Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

20

Fang, X. L.; Zhao, X. J.; Fang, W. J.; Chen, C.; Zheng, N. F. Self- templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 2013, 5, 2205–2218.

21

Xu, Z. G.; Ma, X. Q.; Gao, Y. E.; Hou, M. L.; Xue, P.; Li, C. M.; Kang, Y. J. Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Mater. Chem. Front. 2017, 1, 1257–1272.

22

Zhu, Y. F.; Shi, J. L.; Li, Y. S.; Chen, H. R.; Shen, W. H.; Dong, X. P. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous Mesoporous Mater. 2005, 85, 75–81.

23

Vallet-Regi, M.; Rámila, A.; del Real, R. P.; Pérez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater. 2011, 13, 308–311.

24

Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Chen, H. R.; Dong, X. P.; Ruan, M. L. Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology 2005, 16, 2633–2638.

25

Li, Y. H.; Li, N.; Pan, W.; Yu, Z. Z.; Yang, L. M.; Tang, B. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 2123–2129.

26

Wibowo, D.; Zhao, C. X.; Peters, B. C.; Middelberg, A. P. J. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem. 2014, 62, 12504–12511.

27

Gao, Y.; Chen, Y.; Ji, X. F.; He, X. Y.; Yin, Q.; Zhang, Z. W.; Shi, J. L.; Li, Y. P. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 2011, 5, 9788–9798.

28

Jiao, Y. F.; Guo, J.; Shen, S.; Chang, B. S.; Zhang, Y. H.; Jiang, X. G.; Yang, W. L. Synthesis of discrete and dispersible hollow mesoporous silica nanoparticles with tailored shell thickness for controlled drug release. J. Mater. Chem. 2012, 22, 17636–17643.

29

Jung, Y.; Huh, Y.; Kim, D. Recent advances in surface engineering of porous silicon nanomaterials for biomedical applications. Microporous Mesoporous Mater. 2021, 310, 110673.

30

Li, W.; Liu, Z. H.; Fontana, F.; Ding, Y. P.; Liu, D. F.; Hirvonen, J. T.; Santos, H. A. Tailoring porous silicon for biomedical applications: From drug delivery to cancer immunotherapy. Adv. Mater. 2018, 30, 1703740.

31

Yang, Y. N.; Zhang, M.; Song, H.; Yu, C. Z. Silica-Based nanoparticles for biomedical applications: From nanocarriers to biomodulators. Acc. Chem. Res. 2020, 53, 1545–1556.

32

Ahmad Nor, Y.; Niu, Y. T.; Karmakar, S.; Zhou, L.; Xu, C.; Zhang, J.; Zhang, H. W.; Yu, M. H.; Mahony, D.; Mitter, N. et al. Shaping nanoparticles with hydrophilic compositions and hydrophobic properties as nanocarriers for antibiotic delivery. ACS Cent. Sci. 2015, 1, 328–334.

33

Niu, Y. T.; Yu, M. H.; Hartono, S. B.; Yang, J.; Xu, H. Y.; Zhang, H. W.; Zhang, J.; Zou, J.; Dexter, A.; Gu, W. Y. et al. Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv. Mater. 2013, 25, 6233–6237.

34

Song, H.; Ahmad Nor, Y.; Yu, M. H.; Yang, Y. N.; Zhang, J.; Zhang, H. W.; Xu, C.; Mitter, N.; Yu, C. Z. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455–6462.

35

Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew. Chem., Int. Ed. 2005, 44, 5083–5087.

36

Hao, N. J.; Jayawardana, K. W.; Chen, X.; Yan, M. D. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials. ACS Appl. Mater. Interfaces 2015, 7, 1040–1045.

37

Cheng, K. W.; Zhang, Y.; Li, Y. J.; Gao, Z. G.; Chen, F. H.; Sun, K.; An, P. J.; Sun, C.; Jiang, Y.; Sun, B. W. A novel pH-responsive hollow mesoporous silica nanoparticle (HMSN) system encapsulating doxorubicin (DOX) and glucose oxidase (GOX) for potential cancer treatment. J. Mater. Chem. B 2019, 7, 3291–3302.

38

Chen, Y.; Chen, H. R.; Zeng, D. P.; Tian, Y. B.; Chen, F.; Feng, J. W.; Shi, J. L. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell Imaging and anticancer drug delivery. ACS Nano 2010, 4, 6001–6013.

39

Zhao, W. R.; Chen, H. R.; Li, Y. S.; Li, L.; Lang, M. D.; Shi, J. L. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property. Adv. Funct. Mater. 2008, 18, 2780–2788.

40

Jia, X. M.; Yang, Z. Y.; Wang, Y. J.; Chen, Y.; Yuan, H. T.; Chen, H. Y.; Xu, X. X.; Gao, X. Q.; Liang, Z. Z.; Sun, Y. et al. Hollow mesoporous silica@metal–organic framework and applications for pH-responsive drug delivery. ChemMedChem 2018, 13, 400–405.

41

Wu, M. Y.; Chen, Y.; Zhang, L. X.; Li, X. Y.; Cai, X. J.; Du, Y. Y.; Zhang, L. L.; Shi, J. L. A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. J. Mater. Chem. B 2015, 3, 766–775.

42

Teng, Z. G.; Wang, C. Y.; Tang, Y. X.; Li, W.; Bao, L.; Zhang, X. H.; Su, X. D.; Zhang, F.; Zhang, J. J.; Wang, S. J. et al. Deformable Hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J. Am. Chem. Soc. 2018, 140, 1385−1393.

43

Zhang, J. J.; Lu, N.; Weng, L. X.; Feng, Z. H.; Tao, J.; Su, X. D.; Yu, R. F.; Shi, W. H.; Qiu, Q.; Teng, Z. G. et al. General and facile syntheses of hybridized deformable hollow mesoporous organosilica nanocapsules for drug delivery. J. Colloid Interface Sci. 2021, 583, 714–721.

44

Fan, W. P.; Lu, N.; Shen, Z. Y.; Tang, W.; Shen, B.; Cui, Z. W.; Shan, L. L.; Yang, Z.; Wang, Z. T.; Jacobson, O. et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen- independent X-ray-activated synergistic therapy. Nat. Commun. 2019, 10, 1241.

45

Teng, Z. G.; Li, W.; Tang, Y. X.; Elzatahry, A.; Lu, G. M.; Zhao, D. Y. Mesoporous organosilica hollow nanoparticles: Synthesis and applications. Adv. Mater. 2019, 31, 1707612.

46

Chen, Y.; Meng, Q. S.; Wu, M. Y.; Wang, S. G.; Xu, P. F.; Chen, H. R.; Li, Y. P.; Zhang, L. X.; Wang, L. Z.; Shi, J. L. Hollow mesoporous organosilica nanoparticles: A generic intelligent framework-hybridization approach for biomedicine. J. Am. Chem. Soc. 2014, 136, 16326– 16334.

47

Yang, Y. N.; Lu, Y.; Abbaraju, P. L.; Zhang, J.; Zhang, M.; Xiang, G. Y.; Yu, C. Z. Multi-shelled dendritic mesoporous organosilica hollow spheres: Roles of composition and architecture in cancer immunotherapy. Angew. Chem., Int. Ed. 2017, 56, 8446–8450.

48

Yu, X. F.; Li, W. C.; Hu, Y. R.; Ye, C. Y.; Lu, A. H. Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment. Nano Res. 2021, 14, 1565–1573.

49

Ahmad Nor, Y.; Zhang, H. W.; Purwajanti, S.; Song, H.; Meka, A. K.; Wang, Y.; Mitter, N.; Mahony, D.; Yu, C. Z. Hollow mesoporous carbon nanocarriers for vancomycin delivery: Understanding the structure-release relationship for prolonged antibacterial performance. J. Mater. Chem. B 2016, 4, 7014–7021.

50

Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y.; Sood, A. K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015, 6, 286.

51

Vlasova, K. Y.; Piroyan, A.; Le-Deygen, I. M.; Vishwasrao, H. M.; Ramsey, J. D.; Klyachko, N. L.; Golovin, Y. I.; Rudakovskaya, P. G.; Kireev, I. I.; Kabanov, A. V. et al. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). J. Colloid. Interface Sci. 2019, 552, 689–700.

52

Kirjavainen, M.; Urtti, A.; Valjakka-Koskela, R.; Kiesvaara, J.; Mönkkönen, J. Liposome–skin interactions and their effects on the skin permeation of drugs. Eur. J. Pharm. Sci. 1999, 7, 279–286.

53

He, H. S.; Lu, Y.; Qi, J. P.; Zhu, Q. G.; Chen, Z. J.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019, 9, 36–48.

54

Shi, D.; Mi, G. J.; Shen, Y.; Webster, T. J. Glioma-targeted dual functionalized thermosensitive ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale 2019, 11, 15057– 15071.

55

Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663.

56

Shim, Y. B.; Jung, H. H.; Jang, J. W.; Yang, H. S.; Bae, H.; Park, J. C.; Choi, B.; Lee, S. H. Fabrication of hollow porous PLGA microspheres using sucrose for controlled dual delivery of dexamethasone and BMP2. J. Ind. Eng. Chem. 2016, 37, 101–106.

57

Ke, C. J.; Su, T. Y.; Chen, H. L.; Liu, H. L.; Chiang, W. L.; Chu, P. C.; Xia, Y. N.; Sung, H. W. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew. Chem., Int. Ed. 2011, 50, 8086–8089.

58

Liu, Y. S.; Wu, H. L.; Jia, Z.; Du, B.; Liu, D. Y.; Zhou, Z. M. Silk fibroin-modified ploylactic acid-glycolic acid copolymer porous microspheres as gingival mesenchymal stem cells delivery carrier. Chem. Res. Chin. Univ. 2019, 40, 2419–2426.

59

Zhang, X. Y.; Han, L.; Liu, M. Y.; Wang, K.; Tao, L.; Wan, Q.; Wei, Y. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater. Chem. Front. 2017, 1, 807–822.

60

Wu, J. E.; Zhang, Z. X.; Gu, J. G.; Zhou, W. X.; Liang, X. Y.; Zhou, G. Q.; Han, C. C.; Xu, S. S.; Liu, Y. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J. Controlled Release 2020, 320, 337–346.

61

Li, G. L.; Yang, X. Y.; Wang, B.; Wang, J. Y.; Yang, X. L. Monodisperse temperature-responsive hollow polymer microspheres: Synthesis, characterization and biological application. Polymer 2008, 49, 3436–3443.

62

Yang, X. Y.; Chen, L. T.; Huang, B.; Bai, F.; Yang, X. L. Synthesis of pH-sensitive hollow polymer microspheres and their application as drug carriers. Polymer 2009, 50, 3556–3563.

63

Shi, J. J.; Xiao, Z. Y.; Votruba, A. R.; Vilos, C.; Farokhzad, O. C. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering rna delivery. Angew. Chem., Int. Ed. 2011, 50, 7027–7031.

64

Wu, Y. N.; Zhou, M. M.; Li, S.; Li, Z. H.; Li, J.; Wu, B. Z.; Li, G. T.; Li, F. T.; Guan, X. H. Magnetic metal–organic frameworks: γ- Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small 2014, 10, 2927–2936.

65

Bag, P. P.; Wang, D.; Chen, Z.; Cao, R. Outstanding drug loading capacity by water stable microporous MOF: A potential drug carrier. Chem. Commun. 2016, 52, 3669–3672.

66

Gao, X. C.; Cui, R. X.; Song, L. J.; Liu, Z. L. Hollow structural metal–organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging. Dalton Trans. 2019, 48, 17291–17297.

67

Sun, X.; He, G. H.; Xiong, C. X.; Wang, C. Y.; Lian, X.; Hu, L. F.; Li, Z. K.; Dalgarno, S. J.; Yang, Y. W.; Tian, J. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy. ACS Appl. Mater. Interfaces 2021, 13, 3679–3693.

68

Cui, R. X.; Zhao, P. F.; Yan, Y. L.; Bao, G.; Damirin, A.; Liu, Z. L. Outstanding drug-loading/release capacity of hollow Fe-metal- organic framework-based microcapsules: A potential multifunctional drug-delivery platform. Inorg. Chem. 2021, 60, 1664–1671.

69

Mao, D.; Wan, J. W.; Wang, J. Y.; Wang, D. Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures. Adv. Mater. 2019, 31, 1802874.

70

Wang, J. Y.; Wan, J. W.; Wang, D. Hollow multishelled structures for promising applications: Understanding the structure–performance correlation. Acc. Chem. Res. 2019, 52, 2169–2178.

71

Wang, J. Y.; Wan, J. W.; Yang, N. L.; Li, Q.; Wang, D. Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour. Nat. Rev. Chem. 2020, 4, 159–168.

72

Ma, X. M.; Zhang, X. T.; Yang, L.; Wang, G.; Jiang, K.; Wu, G.; Cui, W. G.; Wei, Z. P. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications. Nanoscale 2016, 8, 8687–8695.

73

Wu, L.; Zhang, H. J.; Wu, M. H.; Zhong, Y. F.; Liu, X. W.; Jiao, Z. Dual-templating synthesis of multi-shelled mesoporous silica nanoparticles as catalyst and drug carrier. Microporous Mesoporous Mater. 2016, 228, 318–328.

74

Huang, C. C.; Huang, W.; Yeh, C. S. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials 2011, 32, 556–564.

75

Teng, Z. G.; Su, X. D.; Zheng, Y. Y.; Zhang, J. J.; Liu, Y.; Wang, S. J.; Wu, J.; Chen, G. T.; Wang, J. D.; Zhao, D. Y. et al. A facile multi-interface transformation approach to monodisperse multiple- shelled periodic mesoporous organosilica hollow spheres. J. Am. Chem. Soc. 2015, 137, 7935–7944.

76

Zhao, D. C.; Yang, N. L.; Wei, Y.; Jin, Q.; Wang, Y. L.; He, H. Y.; Yang, Y.; Han, B.; Zhang, S. J.; Wang, D. Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nat. Commun. 2020, 11, 4450.

77

Dehghani, E.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Fabricating cauliflower-like and dumbbell-like Janus particles: Loading and simultaneous release of DOX and ibuprofen. Colloids Surf. B Biointerfaces 2019, 173, 155–163.

78

Li, X. M.; Zhou, L.; Wei, Y.; Mohamed El-Toni, A.; Zhang, F.; Zhao, D. Y. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 2014, 136, 15086−15092.

79

Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. J. Am. Chem. Soc. 2015, 137, 5903–5906.

80

Yoshida, M.; Roh, K. H.; Mandal, S.; Bhaskar, S.; Lim, D.; Nandivada, H.; Deng, X. P.; Lahann, J. Structurally controlled bio- hybrid materials based on unidirectional association of anisotropic microparticles with human endothelial cells. Adv. Mater. 2009, 21, 4920–4925.

81

Wu, L. Y.; Ross, B. M.; Hong, S. G.; Lee, L. P. Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 2010, 6, 503–507.

82

Chen, X. J.; Zhang, X. P.; Li, S. N.; Zhang, L. Y.; Zhang, Q.; Chen, Z. H.; Li, L.; Su, Z. M.; Cheng, S. Q.; Wang, C. G. Engineering of Yin Yang-like nanocarriers for varisized guest delivery and synergistic eradication of patient-derived hepatocellular carcinoma. Nanoscale Horiz. 2019, 4, 1046–1055.

83

Zhang, S. L.; Chu, Z. Q.; Yin, C.; Zhang, C. Y.; Lin, G.; Li, Q. Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. J. Am. Chem. Soc. 2013, 135, 5709–5716.

84

Doan, T. V. P.; Couet, W.; Olivier, J. C. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int. J. Pharm. 2011, 414, 112–117.

85

Wang, Z. J.; Qian, L.; Wang, X. L.; Yang, F.; Yang, X. R. Construction of hollow DNA/PLL microcapsule as a dual carrier for controlled delivery of DNA and drug. Colloids Sur. A Physicochem. Eng. Asp. 2008, 326, 29–36.

86

Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv. Mater. 2010, 22, 5255–5259.

87

Limnell, T.; Santos, H. A.; Mäkilä, E.; Heikkilä, T.; Salonen, J.; Murzin, D. Y.; Kumar, N.; Laaksonen, T.; Peltonen, L.; Hirvonen, J. Drug delivery formulations of ordered and nonordered mesoporous silica: Comparison of three drug loading methods. J. Pharm. Sci. 2011, 100, 3294–3306.

88

Rayamajhi, S.; Marchitto, J.; Nguyen, T. D. T.; Marasini, R.; Celia, C.; Aryal, S. pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids Surf. B Biointerfaces 2020, 188, 110804.

89

Xu, Y. H.; Szoka, F. C. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996, 35, 5616–5623.

90

Chen, P.; Wang, Z. Y.; Zong, S. F.; Zhu, D.; Chen, H.; Zhang, Y. Z.; Wu, L.; Cui, Y. P. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens. Bioelectron. 2016, 75, 446–451.

91

Huo, T. T.; Yang, Y. F.; Qian, M.; Jiang, H. L.; Du, Y. L.; Zhang, X. Y.; Xie, Y. B.; Huang, R. Q. Versatile hollow cof nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials 2020, 260, 120305.

92
Springer, U. S. Chemical Bond. In Encyclopedia of Microfluidics and Nanofluidics. Li, D. Q., Ed.; Springer: Boston, 2008.
93

Su, Z. H.; Liang, Y. C.; Yao, Y.; Wang, T. Q.; Zhang, N. Polymeric complex micelles based on the double-hydrazone linkage and dual drug-loading strategy for pH-sensitive docetaxel delivery. J. Mater. Chem. B 2016, 4, 1122–1133.

94

Quang Tran, H.; Bhave, M.; Yu, A. M. Current advances of hollow capsules as controlled drug delivery systems. ChemistrySelect 2020, 5, 5537–5551.

95

Ngamcherdtrakul, W.; Morry, J.; Gu, S. D.; Castro, D. J.; Goodyear, S. M.; Sangvanich, T.; Reda, M. M.; Lee, R.; Mihelic, S. A.; Beckman, B. L. et al. Cationic polymer modified mesoporous silica nanoparticles for targeted sirna delivery to HER2+ breast cancer. Adv. Funct. Mater. 2015, 25, 2646–2659.

96
Patel, J. K.; Patel, A. P. Passive Targeting of nanoparticles to cancer. In Surface Modification of Nanoparticles for Targeted Drug Delivery. Pathak, Y. V., Ed.; Cham: Springer, 2019; pp 125–143.https://doi.org/10.1007/978-3-030-06115-9_6
97

Gocheva, G.; Ivanova, A. A look at receptor–ligand pairs for active- targeting drug delivery from crystallographic and molecular dynamics perspectives. Mol. Pharmaceutics 2019, 16, 3293–3321.

98

Park, J. Y.; Park, S.; Lee, T. S.; Hwang, Y. H.; Kim, J. Y.; Kang, W. J.; Key, J. Biodegradable micro-sized discoidal polymeric particles for lung-targeted delivery system. Biomaterials 2019, 218, 119331.

99

Baboci, L.; Capolla, S.; Di Cintio, F.; Colombo, F.; Mauro, P.; Dal Bo, M.; Argenziano, M.; Cavalli, R.; Toffoli, G.; Macor, P. The dual role of the liver in nanomedicine as an actor in the elimination of nanostructures or a therapeutic target. J. Oncol. 2020, 2020, 4638192.

100

Zhang, X. Y.; Wang, H.; Fang, Y.; Fan, Y. Stimuli-responsive Fe3O4 nanoparticle modified by conjugated linoleic acid. Chem. J. Chin. Univ. 2020, 41, 2519–2525.

101

Yang, C.; Song, G. S.; Yuan, H. F.; Yang, Y.; Wang, Y. Q.; Ye, D. J.; Meng, H. M.; Huan, S. Y.; Zhang, X. B. Manganese–fluorouracil metallodrug nanotheranostic for MRI-correlated drug release and enhanced chemoradiotherapy. CCS Chem. 2020, 3, 1116–1128.

102

Liu, D. H.; Du, J. S.; Qi, S. L.; Li, M. Y.; Wang, J. F.; Liu, M. H.; Du, X. L.; Wang, X. Y.; Ren, B. C.; Wu, D. et al. Supramolecular nanoparticles constructed from pillar[5]arene-based host–guest complexation with enhanced aggregation-induced emission for imaging-guided drug delivery. Mater. Chem. Front. 2021, 5, 1418–1427.

103

Yang, B.; Zhang, X. D.; Li, J.; Tian, J.; Wu, Y. P.; Yu, F. X.; Wang, R. B.; Wang, H.; Zhang, D. W.; Liu, Y. et al. In situ loading and delivery of short single- and double-stranded DNA by supramolecular organic frameworks. CCS Chem. 2019, 1, 156–165.

104

Wu, M. X.; Yan, H. J.; Gao, J.; Cheng, Y.; Yang, J.; Wu, J. R.; Gong, B. J.; Zhang, H. Y.; Yang, Y. W. Multifunctional supramolecular materials constructed from polypyrrole@UiO-66 nanohybrids and pillararene nanovalves for targeted chemophotothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 34655–34663.

105

Gao, J.; Li, J.; Geng, W. C.; Chen, F. Y.; Duan, X. C.; Zheng, Z.; Ding, D.; Guo, D. S. Biomarker displacement activation: A general host-guest strategy for targeted phototheranostics in vivo. J. Am. Chem. Soc. 2018, 140, 4945–4953.

106

Ren, Y. S.; Guo, Y. Y.; Liu, X. Y.; Song, J.; Zhang, C. Platinum(Ⅳ) prodrug-grafted phosphorothioate DNA and its self-assembled nanostructure for targeted drug delivery. Chem. J. Chin. Univ. 2020, 41, 1721–1730.

107

Liang, Q.; Xi, J. Q.; Gao, X. J.; Zhang, R. F.; Yang, Y. L.; Gao, X. F.; Yan, X. Y.; Gao, L. Z.; Fan, K. L. A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 2020, 35, 100935.

108

An, J.; Hu, Y. G.; Cheng, K.; Li, C.; Hou, X. L.; Wang, G. L.; Zhang, X. S.; Liu, B.; Zhao, Y. D.; Zhang, M. Z. ROS-augmented and tumor-microenvironment responsive biodegradable nanoplatform for enhancing chemo-sonodynamic therapy. Biomaterials 2020, 234, 119761.

109

Domiński, A.; Konieczny, T.; Duale, K.; Krawczyk, M.; Pastuch- Gawolek, G.; Kurcok, P. Stimuli-responsive aliphatic polycarbonate nanocarriers for tumor-targeted drug delivery. Polymers 2020, 12, 2890.

110

Hao, N. J.; Chen, X.; Jeon, S.; Yan, M. D. Carbohydrate- conjugated hollow oblate mesoporous silica nanoparticles as nanoantibiotics to target mycobacteria. Adv. Healthc. Mater. 2015, 4, 2797–2801.

111

Yan, S. Z.; Chen, S.; Gou, X. B.; Yang, J.; An, J. X.; Jin, X. Y.; Yang, Y. W.; Chen, L.; Gao, H. Biodegradable supramolecular materials based on cationic polyaspartamides and pillar[5]arene for targeting gram-positive bacteria and mitigating antimicrobial resistance. Adv. Funct. Mater. 2019, 29, 1904683.

112

Yue, Z. G.; Wei, W.; You, Z. X.; Yang, Q. Z.; Yue, H.; Su, Z. G.; Ma, G. H. Iron oxide nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs. Adv. Funct. Mater. 2011, 21, 3446–3453.

113

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

114

Gao, F.; Tang, Y.; Liu, W. L.; Zou, M. Z.; Huang, C.; Liu, C. J.; Zhang, X. Z. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv. Mater. 2019, 31, 1904639.

115

Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370.

116

Jiang, T. Y.; Mo, R.; Bellotti, A.; Zhou, J. P.; Gu, Z. Gel-liposome- mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 2014, 24, 2295–2304.

117

Wang, Y. Y.; Wang, W. L.; Shen, X. C.; Zhou, B.; Chen, T.; Guo, Z. X.; Wen, C. C.; Jiang, B. P.; Liang, H. Combination-responsive MoO3-x-hybridized hyaluronic acid hollow nanospheres for cancer phototheranostics. ACS Appl. Mater. Interfaces 2018, 10, 42088– 42101.

118

Yang, G. B.; Xu, L. G.; Xu, J.; Zhang, R.; Song, G. S.; Chao, Y.; Feng, L. Z.; Han, F. X.; Dong, Z. L.; Li, B. et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 2018, 18, 2475–2484.

119

Jin, L.; Huang, Q. J.; Zeng, H. Y.; Du, J. Z.; Xu, S.; Chen, C. R. Hydrotalcite-gated hollow mesoporous silica delivery system for controlled drug release. Microporous Mesoporous Mater. 2019, 274, 304–312.

120

Liu, J.; Chen, B.; Zhang, J. J. Preparation of pH-responsive doxorubicin nanocapsules by combining high-gravity antisolvent precipitation with in-situ polymerization for intracellular anticancer drug delivery. Chem. Res. Chin. Univ. 2020, 36, 927–933.

121

Dong, Z. L.; Feng, L. Z.; Hao, Y.; Chen, M. C.; Gao, M.; Chao, Y.; Zhao, H.; Zhu, W. W.; Liu, J. J.; Liang, C. et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J. Am. Chem. Soc. 2018, 140, 2165–2178.

122

Yang, J. H.; Gao, F.; Han, D. L.; Yang, L. L.; Kong, X. W.; Wei, M. B.; Cao, J.; Liu, H. L.; Wu, Z. T.; Pan, G. Y. Multifunctional zinc-based hollow nanoplatforms as a smart ph-responsive drug delivery system to enhance in vivo tumor-inhibition efficacy. Mater. Des. 2018, 139, 172–180.

123

Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment- responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

124

Weerasuriya, D. R. K.; Wijesinghe, W. P. S. L.; Rajapakse, R. M. G. Encapsulation of anticancer drug copper bis(8-hydroxyquinoline) in hydroxyapatite for pH-sensitive targeted delivery and slow release. Mater. Sci. Eng. C 2017, 71, 206–213.

125

Kocak, G.; Tuncer, C.; Bütün, V. pH-responsive polymers. Polym. Chem. 2017, 8, 144–176.

126

Zhang, L. Y.; Zhang, M. J.; Zhou, L.; Han, Q. H.; Chen, X. J.; Li, S. N.; Li, L.; Su, Z. M.; Wang, C. G. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials 2018, 181, 113–125.

127

Gao, M. M.; Wang, C. L.; Dou, H. J.; Xu, G. X. One-step self- assembly/polymerization fabrication and biomedical application of carboplatin@dextran nanocarrier. Chem. J. Chin. Univ. 2019, 40, 1304–1309.

128

Lu, L. L.; Xiong, W. Y.; Ma, J. B.; Gao, T. F.; Peng, S. Y.; Xiao, W. Design of dual-responsive nanocarries with high drug loading capacity based on hollow mesoporous organosilica nanoparticles. Mater. Chem. Phys. 2019, 223, 230–235.

129

Zhao, N. N.; Lin, X. Y.; Zhang, Q.; Ji, Z. X.; Xu, F. J. Redox- triggered gatekeeper-enveloped starlike hollow silica nanoparticles for intelligent delivery systems. Small 2015, 11, 6467–6479.

130

Zhao, Q. F.; Wang, S. Y.; Yang, Y.; Li, X.; Di, D. H.; Zhang, C. G.; Jiang, T. Y.; Wang, S. L. Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging. Mater. Sci. Eng. C 2017, 78, 475–484.

131

Wu, M. Y.; Meng, Q. S.; Chen, Y.; Zhang, L. X.; Li, M. L.; Cai, X. J.; Li, Y. P.; Yu, P. C.; Zhang, L. L.; Shi, J. L. Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv. Mater. 2016, 28, 1963– 1969.

132

Jiao, J.; Li, X.; Zhang, S.; Liu, J.; Di, D. H.; Zhang, Y.; Zhao, Q. F.; Wang, S. L. Redox and pH dual-responsive peg and chitosan- conjugated hollow mesoporous silica for controlled drug release. Mater. Sci. Eng. C 2016, 67, 26–33.

133

Tian, Y.; Guo, R. R.; Jiao, Y. F.; Sun, Y. F.; Shen, S.; Wang, Y. J.; Lu, D. R.; Jiang, X. G.; Yang, W. L. Redox stimuli-responsive hollow mesoporous silica nanocarriers for targeted drug delivery in cancer therapy. Nanoscale Horiz. 2016, 1, 480–487.

134

Hadipour Moghaddam, S. P.; Yazdimamaghani, M.; Ghandehari, H. Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. J. Controlled Release 2018, 282, 62–75.

135

Zhang, Y. Y.; Ang, C. Y.; Li, M. H.; Tan, S. Y.; Qu, Q. Y.; Luo, Z.; Zhao, Y. L. Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 18179–18187.

136

Zhu, Y. F.; Meng, W. J.; Gao, H.; Hanagata, N. Hollow mesoporous silica/poly(L-lysine) particles for codelivery of drug and gene with enzyme-triggered release property. J. Phys. Chem. C 2011, 115, 13630–13636.

137

Kaziem, A. E.; Gao, Y. H.; He, S.; Li, J. H. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J. Agric. Food Chem. 2017, 65, 7854–7864.

138

Liu, C. Q.; Chen, Z. W.; Wang, Z. Z.; Li, W.; Ju, E. G.; Yan, Z. Q.; Liu, Z.; Ren, J. S.; Qu, X. G. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. Nanoscale 2016, 8, 12570–12578.

139

Zhang, J. F.; Zhang, J.; Li, W. Y.; Chen, R.; Zhang, Z. Y.; Zhang, W. J.; Tang, Y. B.; Chen, X. Y.; Liu, G.; Lee, C. S. Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo. Theranostics 2017, 7, 3007–3020.

140

Wu, F.; Zhang, M.; Lu, H. W.; Liang, D.; Huang, Y. L.; Xia, Y. H.; Hu, Y. Q.; Hu, S. Q.; Wang, J. X.; Yi, X. Y. et al. Triple stimuli- responsive magnetic hollow porous carbon-based nanodrug delivery system for magnetic resonance imaging-guided synergistic photothermal/chemotherapy of cancer. ACS Appl. Mater. Interfaces 2018, 10, 21939–21949.

141

Deng, X. R.; Li, K.; Cai, X. C.; Liu, B.; Wei, Y.; Deng, K. R.; Xie, Z. X.; Wu, Z. J.; Ma, P. A.; Hou, Z. Y. et al. A hollow-structured CuS@Cu2S@Au nanohybrid: Synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Adv. Mater. 2017, 29, 1701266.

142

Zhou, L.; Chen, Z. W.; Dong, K.; Yin, M. L.; Ren, J. S.; Qu, X. G. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. Adv. Mater. 2014, 26, 2424–2430.

143

Cho, H. J.; Chung, M.; Shim, M. S. Engineered photo-responsive materials for near-infrared-triggered drug delivery. J. Ind. Eng. Chem. 2015, 31, 15–25.

144

Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater. 2014, 24, 363–371.

145

Hegazy, M.; Zhou, P.; Wu, G. Y.; Wang, L.; Rahoui, N.; Taloub, N.; Huang, X.; Huang, Y. D. Construction of polymer coated core–shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polym. Chem. 2017, 8, 5852–5864.

146

Peralta, M. E.; Jadhav, S. A.; Magnacca, G.; Scalarone, D.; Mártire, D. O.; Parolo, M. E.; Carlos, L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J. Colloid Interface Sci. 2019, 544, 198–205.

147

Yu, F.; Wu, H. J.; Tang, Y.; Xu, Y. F.; Qian, X. H.; Zhu, W. P. Temperature-sensitive copolymer-coated fluorescent mesoporous silica nanoparticles as a reactive oxygen species activated drug delivery system. Int. J. Pharm. 2018, 536, 11–20.

148

Chang, B. S.; Sha, X. Y.; Guo, J.; Jiao, Y. F.; Wang, C. C.; Yang, W. L. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silicananoparticles for controlled drug release. J. Mater. Chem. 2011, 21, 9239–9247.

149

Zhao, J. J.; Zhang, P. H.; He, Z. M.; Min, Q. H.; Abdel-Halim, E. S.; Zhu, J. J. Thermal-activated nanocarriers for the manipulation of cellular uptake and photothermal therapy on command. Chem. Commun. 2016, 52, 5722–5725.

150

Song, Y. H.; Li, D. D.; Lu, Y.; Jiang, K.; Yang, Y.; Xu, Y. J.; Dong, L.; Yan, X.; Ling, D. S.; Yang, X. Z. et al. Ferrimagnetic mPEG-b-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia- chemotherapy. Natl. Sci. Rev. 2020, 7, 723–736.

151

Ali, I.; Chen, L. M.; Huang, Y. J.; Song, L. P.; Lu, X. F.; Liu, B. Q.; Zhang, L.; Zhang, J. W.; Hou, L. X.; Chen, T. Humidity-responsive gold aerogel for real-time monitoring of human breath. Langmuir 2018, 34, 4908–4913.

152

Zhu, Y. F.; Shi, J. L.; Li, Y. S.; Chen, H. R.; Shen, W. H.; Dong, X. P. Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics. J. Mater. Res. 2005, 20, 54–61.

153

Hou, Q.; Tao, X.; Yang, Y. J.; Ma, Y. Optimal synthesis of meso-structured hollow titania nanotubes templated on CaCO3 nanoparticles. Powder Technol. 2010, 198, 429–434.

154

Qian, K.; Shi, T. Y.; He, S.; Luo, L. X.; Liu, X. L.; Cao, Y. S. Release kinetics of tebuconazole from porous hollow silica nanospheres prepared by miniemulsion method. Microporous Mesoporous Mater. 2013, 169, 1–6.

155

Gong, L.; Sun, Y. Y.; Yu, M.; Gao, Y.; Zou, M. J.; Cheng, G. Development and evaluation of compression coating gastro-floating tablet of alfuzosin hydrochloride for zero-order controlled release. AAPS PharmSciTech 2018, 19, 3277–3286.

156

Abhishek S, D.; Prashant J, G.; Abhijit A, A.; B. M, N. Sustained release dosage form: A concise review. Int. J. Pharm. Drug Anal. 2017, 5, 153–160.

157

Liu, J.; Qiao, S. Z.; Budi Hartono, S.; Lu, G. Q. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem., Int. Ed. 2010, 49, 4981–4985.

158

Zhao, S. S.; Zhang, S. L.; Ma, J.; Fan, L.; Yin, C.; Lin, G.; Li, Q. Double loaded self-decomposable SiO2 nanoparticles for sustained drug release. Nanoscale 2015, 7, 16389–16398.

159

Fan, L.; Jin, B. Q.; Zhang, S. L.; Song, C. J.; Li, Q. Stimuli-free programmable drug release for combination chemotherapy. Nanoscale 2016, 8, 12553–12559.

160

Ding, Y. X.; Liu, J. J.; Li, X.; Xu, L. L.; Li, C.; Ma, L.; Liu, J. F.; Ma, R. J.; An, Y. L.; Huang, F. et al. Rational design of drug delivery systems for potential programmable drug release and improved therapeutic effect. Mater. Chem. Front. 2019, 3, 1159–1167.

161

Zhang, S.; Chen, J.; Yu, Y. M.; Dai, K.; Wang, J.; Liu, C. S. Accelerated bone regenerative efficiency by regulating sequential release of BMP-2 and VEGF and synergism with sulfated chitosan. ACS Biomater. Sci. Eng. 2019, 5, 1944–1955.

162

Nie, H. M.; Dong, Z. G.; Arifin, D. Y.; Hu, Y.; Wang, C. H. Core/shell microspheres via coaxial electrohydrodynamic atomization for sequential and parallel release of drugs. J. Biomed. Mater. Res. Part A 2010, 95A, 709–716.

163

Ruiz-Esparza, G. U.; Wu, S. H.; Segura-Ibarra, V.; Cara, F. E.; Evans, K. W.; Milosevic, M.; Ziemys, A.; Kojic, M.; Meric- Bernstam, F.; Ferrari, M. et al. Polymer nanoparticles encased in a cyclodextrin complex shell for potential site- and sequence- specific drug release. Adv. Funct. Mater. 2014, 24, 4753–4761.

164

Dou, D. D.; Zhou, G.; Liu, H. W.; Zhang, J.; Liu, M. L.; Xiao, X. F.; Fei, J. J.; Guan, X. L.; Fan, Y. B. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization. Int. J. Biol. Macromol. 2019, 123, 622–628.

165

Cong, Y.; Li, Q. J.; Chen, M.; Wu, L. M. Synthesis of dual-stimuli- responsive microcontainers with two payloads in different storage spaces for preprogrammable release. Angew. Chem., Int. Ed. 2017, 56, 3552–3556.

166

Xu, W. N.; Ledin, P. A.; Iatridi, Z.; Tsitsilianis, C.; Tsukruk, V. V. Multicompartmental microcapsules with orthogonal programmable two-way sequencing of hydrophobic and hydrophilic cargo release. Angew. Chem., Int. Ed. 2016, 55, 4908–4913.

Nano Research
Pages 739-757
Cite this article:
Zhao D, Yang N, Xu L, et al. Hollow structures as drug carriers: Recognition, response, and release. Nano Research, 2022, 15(2): 739-757. https://doi.org/10.1007/s12274-021-3595-5
Topics:

1210

Views

38

Crossref

39

Web of Science

39

Scopus

4

CSCD

Altmetrics

Received: 02 April 2021
Revised: 14 May 2021
Accepted: 15 May 2021
Published: 08 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return