AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond

Leigang Li1Pengtang Wang2Zifang Cheng2Qi Shao2Xiaoqing Huang1
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen UniversityXiamen 361005 China
College of Chemistry, Chemical Engineering and Materials Science Soochow UniversitySuzhou 215123 China
Show Author Information

Graphical Abstract

Abstract

The sluggish reaction kinetics of oxygen evolution reaction (OER) has largely lowered the efficiency of electrochemical water splitting. Ir represents one of the state-of-the-art electrocatalysts for promoting OER especially in acidic electrolytes. However, it remains a formidable challenge to synthesize high-quality one-dimensional (1D) Ir-based nanostructures for improved electrocatalytic performance. Herein, a template-assisted synthesis method is reported wherein 1D porous Ir–Te nanowires (Ir–Te NWs) are synthesized with Te NWs serving as the template. The Ir–Te NWs exhibit highly enhanced OER performance compared to commercial IrO2 and Ir/C. In detail, the overpotentials to reach 10 mA·cm−2 are 248 and 284 mV in 1 M KOH and 0.5 M H2SO4, respectively, much lower than those of commercial catalysts. The Ir–Te NWs also show smaller Tafel slopes than commercial IrO2 and Ir/C, signifying faster reaction kinetics. Besides, much more durable OER activity can be maintained for Ir–Te NWs with negligible decay during 25 and 20 h stability tests in 1 M KOH and 0.5 M H2SO4, respectively. Further analysis indicates that the significantly improved OER performance of Ir–Te NWs could be ascribed to the larger electrochemical surface area and smaller electrical resistance. More significantly, the templated synthesis of Ir–Te NWs can be facilely extended to the fabrication of other metal–Te NWs including Ru–Te, Rh–Te and Pt–Te NWs. The design and synthesis of 1D metal-based NWs in this work provide important inspiration for the synthesis of diversified 1D metallic nanostructures with distinctly enhanced catalytic performance and beyond.

Electronic Supplementary Material

Download File(s)
12274_2021_3603_MOESM1_ESM.pdf (6.4 MB)

References

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

2

Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39–44.

3

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

4

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106

5

Wei, Z. H.; Sun, J. M.; Li, Y.; Datye, A. K.; Wang, Y. Bimetallic catalysts for hydrogen generation. Chem. Soc. Rev. 2012, 41, 7994–8008.

6

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent develop­ment and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

7

Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García- Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

8

Li, L. G.; Shao, Q.; Huang, X. Q. Amorphous oxide nanostructures for advanced electrocatalysis. Chem. Eur. J. 2020, 26, 3943–3960.

9

Cheng, Z. F.; Huang, B. L.; Pi, Y. C.; Li, L. G.; Shao, Q.; Huang, X. Q. Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. Natl. Sci. Rev. 2020, 7, 1340–1348.

10

Xu, H. T.; Liu, T. Y.; Bai, S. X.; Li, L. G.; Zhu, Y. M.; Wang, J.; Yang, S. Z.; Li, Y. F.; Shao, Q.; Huang, X. Q. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 2020, 20, 5482–5489.

11

Pi, Y. C.; Shao, Q.; Zhu, X.; Huang, X. Q. Dynamic structure evolution of composition segregated iridium-nickel rhombic dodecahedra toward efficient oxygen evolution electrocatalysis. ACS Nano 2018, 12, 7371–7379.

12

Pi, Y. C.; Zhang, N.; Guo, S. J.; Guo, J.; Huang, X. Q. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 2016, 16, 4424–4430.

13

Pi, Y. C.; Shao, Q.; Wang, P. T.; Guo, J.; Huang, X. Q. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting. Adv. Funct. Mater. 2017, 27, 1700886.

14

Pi, Y. C.; Guo, J.; Shao, Q.; Huang, X. Q. Highly efficient acidic oxygen evolution electrocatalysis enabled by porous Ir–Cu nanocrystals with three-dimensional electrocatalytic surfaces. Chem. Mater. 2018, 30, 8571–8578.

15

Garnett, E.; Mai, L. Q.; Yang, P. D. Introduction: 1D nanomaterials/ nanowires. Chem. Rev. 2019, 119, 8955–8957.

16

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.

17

Hyun, J. K.; Zhang, S. X.; Lauhon, L. J. Nanowire heterostructures. Annu. Rev. Mater. Res. 2013, 43, 451–479.

18

Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.

19

Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480– 9485.

20

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

21

Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

22

Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

23

Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.

24

Wang, J.; Ji, Y. J.; Yin, R. G.; Li, Y. Y.; Shao, Q.; Huang, X. Q. Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. A 2019, 7, 6411–6416.

25

Zhang, L. Q.; Liu, L. C.; Wang, H. D.; Shen, H. X.; Cheng, Q.; Yan, C.; Park, S. Electrodeposition of rhodium nanowires arrays and their morphology-dependent hydrogen evolution activity. Nanomaterials 2017, 7, 103.

26

Liang, H. W.; Liu, S.; Gong, J. Y.; Wang, S. B.; Wang, L.; Yu, S. H. Ultrathin Te nanowires: An excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv. Mater. 2009, 21, 1850–1854.

27

Wang, S.; Chen, K. F.; Wang, M.; Li, H. S.; Chen, G. R.; Liu, J.; Xu, L. H.; Jian, Y.; Meng, C. D.; Zheng, X. Y. et al. Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing. J. Mater. Chem. C 2018, 6, 4737–4745.

28

Narayanan, T. N.; Shaijumon, M. M.; Ci, L. J.; Ajayan, P. M.; Anantharaman, M. R. On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties. Nano Res. 2008, 1, 465–473.

29

Huang, X. Q.; Chen, Y.; Chiu, C. Y.; Zhang, H.; Xu, Y. X.; Duan, X. F.; Huang, Y. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale 2013, 5, 6284–6290.

30

Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High- quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

31

Li, Z. L.; Zheng, S. Q.; Zhang, Y. Z.; Teng, R. Y.; Huang, T.; Chen, C. F.; Lu, G. W. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A 2013, 1, 15046–15052.

Nano Research
Pages 1087-1093
Cite this article:
Li L, Wang P, Cheng Z, et al. One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano Research, 2022, 15(2): 1087-1093. https://doi.org/10.1007/s12274-021-3603-9
Topics:

616

Views

30

Crossref

27

Web of Science

28

Scopus

1

CSCD

Altmetrics

Received: 22 April 2021
Revised: 18 May 2021
Accepted: 19 May 2021
Published: 09 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return