Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The sluggish reaction kinetics of oxygen evolution reaction (OER) has largely lowered the efficiency of electrochemical water splitting. Ir represents one of the state-of-the-art electrocatalysts for promoting OER especially in acidic electrolytes. However, it remains a formidable challenge to synthesize high-quality one-dimensional (1D) Ir-based nanostructures for improved electrocatalytic performance. Herein, a template-assisted synthesis method is reported wherein 1D porous Ir–Te nanowires (Ir–Te NWs) are synthesized with Te NWs serving as the template. The Ir–Te NWs exhibit highly enhanced OER performance compared to commercial IrO2 and Ir/C. In detail, the overpotentials to reach 10 mA·cm−2 are 248 and 284 mV in 1 M KOH and 0.5 M H2SO4, respectively, much lower than those of commercial catalysts. The Ir–Te NWs also show smaller Tafel slopes than commercial IrO2 and Ir/C, signifying faster reaction kinetics. Besides, much more durable OER activity can be maintained for Ir–Te NWs with negligible decay during 25 and 20 h stability tests in 1 M KOH and 0.5 M H2SO4, respectively. Further analysis indicates that the significantly improved OER performance of Ir–Te NWs could be ascribed to the larger electrochemical surface area and smaller electrical resistance. More significantly, the templated synthesis of Ir–Te NWs can be facilely extended to the fabrication of other metal–Te NWs including Ru–Te, Rh–Te and Pt–Te NWs. The design and synthesis of 1D metal-based NWs in this work provide important inspiration for the synthesis of diversified 1D metallic nanostructures with distinctly enhanced catalytic performance and beyond.
Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.
Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39–44.
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.
Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106
Wei, Z. H.; Sun, J. M.; Li, Y.; Datye, A. K.; Wang, Y. Bimetallic catalysts for hydrogen generation. Chem. Soc. Rev. 2012, 41, 7994–8008.
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.
Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García- Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.
Li, L. G.; Shao, Q.; Huang, X. Q. Amorphous oxide nanostructures for advanced electrocatalysis. Chem. Eur. J. 2020, 26, 3943–3960.
Cheng, Z. F.; Huang, B. L.; Pi, Y. C.; Li, L. G.; Shao, Q.; Huang, X. Q. Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. Natl. Sci. Rev. 2020, 7, 1340–1348.
Xu, H. T.; Liu, T. Y.; Bai, S. X.; Li, L. G.; Zhu, Y. M.; Wang, J.; Yang, S. Z.; Li, Y. F.; Shao, Q.; Huang, X. Q. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 2020, 20, 5482–5489.
Pi, Y. C.; Shao, Q.; Zhu, X.; Huang, X. Q. Dynamic structure evolution of composition segregated iridium-nickel rhombic dodecahedra toward efficient oxygen evolution electrocatalysis. ACS Nano 2018, 12, 7371–7379.
Pi, Y. C.; Zhang, N.; Guo, S. J.; Guo, J.; Huang, X. Q. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 2016, 16, 4424–4430.
Pi, Y. C.; Shao, Q.; Wang, P. T.; Guo, J.; Huang, X. Q. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting. Adv. Funct. Mater. 2017, 27, 1700886.
Pi, Y. C.; Guo, J.; Shao, Q.; Huang, X. Q. Highly efficient acidic oxygen evolution electrocatalysis enabled by porous Ir–Cu nanocrystals with three-dimensional electrocatalytic surfaces. Chem. Mater. 2018, 30, 8571–8578.
Garnett, E.; Mai, L. Q.; Yang, P. D. Introduction: 1D nanomaterials/ nanowires. Chem. Rev. 2019, 119, 8955–8957.
Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.
Hyun, J. K.; Zhang, S. X.; Lauhon, L. J. Nanowire heterostructures. Annu. Rev. Mater. Res. 2013, 43, 451–479.
Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.
Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480– 9485.
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.
Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.
Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.
Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.
Wang, J.; Ji, Y. J.; Yin, R. G.; Li, Y. Y.; Shao, Q.; Huang, X. Q. Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. A 2019, 7, 6411–6416.
Zhang, L. Q.; Liu, L. C.; Wang, H. D.; Shen, H. X.; Cheng, Q.; Yan, C.; Park, S. Electrodeposition of rhodium nanowires arrays and their morphology-dependent hydrogen evolution activity. Nanomaterials 2017, 7, 103.
Liang, H. W.; Liu, S.; Gong, J. Y.; Wang, S. B.; Wang, L.; Yu, S. H. Ultrathin Te nanowires: An excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv. Mater. 2009, 21, 1850–1854.
Wang, S.; Chen, K. F.; Wang, M.; Li, H. S.; Chen, G. R.; Liu, J.; Xu, L. H.; Jian, Y.; Meng, C. D.; Zheng, X. Y. et al. Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing. J. Mater. Chem. C 2018, 6, 4737–4745.
Narayanan, T. N.; Shaijumon, M. M.; Ci, L. J.; Ajayan, P. M.; Anantharaman, M. R. On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties. Nano Res. 2008, 1, 465–473.
Huang, X. Q.; Chen, Y.; Chiu, C. Y.; Zhang, H.; Xu, Y. X.; Duan, X. F.; Huang, Y. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale 2013, 5, 6284–6290.
Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High- quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.
Li, Z. L.; Zheng, S. Q.; Zhang, Y. Z.; Teng, R. Y.; Huang, T.; Chen, C. F.; Lu, G. W. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A 2013, 1, 15046–15052.