AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation

Ming Cheng1Lan Yang1Huiyi Li1Wei Bai1Chong Xiao1,2( )Yi Xie1,2( )
Hefei National Laboratory for Physical Sciences at the Microscale,CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China,Hefei,230026,China;
Institute of Energy,Hefei Comprehensive National Science Center,Hefei,230031,China;
Show Author Information

Graphical Abstract

Abstract

Photocatalytic water oxidation is a crucial step in water splitting, but is generally restricted by the slow kinetics. Therefore, it is necessary to develop high-performance water oxidation photocatalysts. Herein, the Fe-doped Bi2WO6 nanosheets with oxygen vacancies (OVs) were synthesized for enhanced photocatalytic water oxidation efficiency, showing a synergistic effect between Fe dopants and OVs. When a molar fraction of 2% Fe was doped into the Bi2WO6 nanosheets, the visible-light-driven photocatalytic oxygen evolution rate was increased up to 131.3 µmol·h−1·gcat−1 under ambient conditions, which was more than 3 times that of pure Bi2WO6 nanosheets. The proper doping concentration of Fe could promote the formation of OVs and at the same time modulate the band structure of catalysts, especially the position of the valence band maximum (VBM), leading to effective visible-light absorption and enhanced oxidizing ability of photogenerated holes. With ameliorated localized electron distribution, fast charge transfer channel emerged between the OVs and adjacent metal atoms, which accelerated the charge carrier transfer and promoted the separation of photoexcited electrons and holes. This work provides feasible approaches for designing efficient two-dimensional semiconductor water oxidation photocatalysts that could utilize visible-light, which will make more use of solar energy.

Electronic Supplementary Material

Download File(s)
12274_2021_3605_MOESM1_ESM.pdf (2.6 MB)

References

1

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

2

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

3

Lin, S.; Huang, H. W.; Ma, T. Y.; Zhang, Y. H. Photocatalytic oxygen evolution from water splitting. Adv. Sci. 2020, 8, 2002458.

4

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting — a critical review. Energy Environ. Sci. 2015, 8, 731–759.

5

Zhang, C.; Zhu, Y. F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 2005, 17, 3537–3545.

6

Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286–8287.

7

Renger, G.; Renger, T. Photosystem Ⅱ: The machinery of photosynthetic water splitting. Photosynth. Res. 2008, 98, 53–80.

8

Kamat, P. V. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 2012, 45, 1906–1915.

9

Chen, P.; Lei, B.; Dong, X. A.; Wang, H.; Sheng, J. P.; Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Rare-earth single-atom La-N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 2020, 14, 15841–15852.

10

Ma, Z. J.; Cui, Z. T.; Lv, Y. H.; Sa, R. J.; Wu, K. C.; Li, Q. H. Three-in-one: Opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S co-doping. Int. J. Hydrogen Energy 2020, 45, 4534–4544.

11

Xia, B. Q.; Zhang, Y. Z.; Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Single-atom photocatalysts for emerging reactions. ACS Cent. Sci. 2021, 7, 39–54.

12

Zhang, F. J.; Oh, W. C.; Zhang, K. New insight for enhancing photocatalytic activity of MWCNT/TiO2 by decorating palladium nanoparticles as charge-transfer channel. Mater. Res. Bull. 2012, 47, 619–624.

13

Wei, Z. D.; Zhu, Y.; Guo, W. Q.; Liu, J. Y.; Fang, W. J.; Jiang, Z.; Shangguan, W. F. Enhanced twisting degree assisted overall water splitting on a novel nano-dodecahedron BiVO4-based heterojunction. Appl. Catal. B Environ. 2020, 266, 118664.

14

Wang, Y. J.; Wang, F. M.; He, J. Controlled fabrication and photo-catalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 2013, 5, 11291–11297.

15

Kong, L. N.; Zhang, X. T.; Wang, C. H.; Xu, J. P.; Du, X. W.; Li, L. Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance. Appl. Surf. Sci. 2018, 448, 288–296.

16

Ren, X. C.; Gao, P.; Kong, X. L.; Jiang, R.; Yang, P. P.; Chen, Y. J.; Chi, Q. Q.; Li, B. X. NiO/Ni/TiO2 nanocables with Schottky/p-n heterojunctions and the improved photocatalytic performance in water splitting under visible light. J. Colloid Interface Sci. 2018, 530, 1–8.

17

Xie, Y. S.; Yuan, L.; Zhang, N.; Xu, Y. J. Light-tuned switching of charge transfer channel for simultaneously boosted photoactivity and stability. Appl. Catal. B Environ. 2018, 238, 19–26.

18

Liang, C.; Niu, C. G.; Zhang, L.; Wen, X. J.; Yang, S. F.; Guo, H.; Zeng, G. M. Construction of 2D heterojunction system with enhanced photocatalytic performance: Plasmonic Bi and reduced graphene oxide co-modified Bi5O7I with high-speed charge transfer channels. J. Hazard. Mater. 2019, 361, 245–258.

19

Ning, X. M.; Wu, Y. L.; Ma, X. F.; Zhang, Z.; Gao, R. Q.; Chen, J.; Shan, D. L.; Lu, X. Q. A novel charge transfer channel to simultaneously enhance photocatalytic water splitting activity and stability of CdS. Adv. Funct. Mater. 2019, 29, 1902992.

20

Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.

21

Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3–12.

22

Jiang, D. H.; Liu, Z. R.; Fu, L. J.; Yang, H. M. Interfacial chemical-bond-modulated charge transfer of heterostructures for improving photocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 9872–9880.

23

Sun, Y. X.; Wang, L.; Wang, T.; Liu, X. Q.; Xu, T.; Wei, M. B.; Yang, L. L.; Li, C. X. Improved photocatalytic activity of Ni2P/NiCo-LDH composites via a Co-P bond charge transfer channel to degrade tetracycline under visible light. J. Alloys Compd. 2021, 852, 156963.

24

Liu, C. B.; Chen, J. B.; Che, H. N.; Huang, K.; Charpentier, P. A.; Xu, W. Z.; Shi, W. D.; Dong, H. J. Construction and enhanced photocatalytic activities of a hydrogenated TiO2 nanobelt coated with CDs/MoS2 nanosheets. RSC Adv. 2017, 7, 8429–8442.

25

Ran, J. R.; Zhang, H. P.; Qu, J. T.; Shan, J. Q.; Chen, S. M.; Yang, F.; Zheng, R. K.; Cairney, J.; Song, L.; Jing, L. Q. et al. Atomic-level insights into the edge active ReS2 ultrathin nanosheets for high-efficiency light-to-hydrogen conversion. ACS Materials Lett. 2020, 2, 1484–1494.

26

Ran, J. R.; Qu, J. T.; Zhang, H. P.; Wen, T.; Wang, H. L.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Zheng, R. K. et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 2019, 9, 1803402.

27

Li, Y. B.; Li, T.; Dai, X. C.; Huang, M. H.; He, Y. H.; Xiao, G. C.; Xiao, F. X. Cascade charge transfer mediated by in situ interface modulation toward solar hydrogen production. J. Mater. Chem. A 2019, 7, 8938–8951.

28

Zeng, Z. P.; Li, T.; Li, Y. B.; Dai, X. C.; Huang, M. H.; He, Y. H.; Xiao, G. C.; Xiao, F. X. Plasmon-induced photoelectrochemical water oxidation enabled by in situ layer-by-layer construction of cascade charge transfer channel in multilayered photoanode. J. Mater. Chem. A 2018, 6, 24686–24692.

29

Lv, J. X.; Hu, Q. S.; Cao, C. J.; Zhao, Y. P. Modulation of valence band maximum edge and photocatalytic activity of BiOX by incorporation of halides. Chemosphere 2018, 191, 427–437.

30

Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297.

31

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

32

Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

33

Cao, W.; Wang, J.; Ma, M. Exfoliation of two-dimensional materials: The role of entropy. J. Phys. Chem. Lett. 2019, 10, 981–986.

34

Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

35

Li, C. M.; Chen, G.; Sun, J. X.; Rao, J. C.; Han, Z. H.; Hu, Y. D.; Zhou, Y. S. A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl. Mater. Interfaces 2015, 7, 25716–25724.

36

Hu, T. X.; Li, H. P.; Zhang, R. J.; Du, N.; Hou, W. G. Thickness-determined photocatalytic performance of bismuth tungstate nanosheets. RSC Adv. 2016, 6, 31744–31750.

37

Huang, Y. K.; Kang, S. F.; Yang, Y.; Qin, H. F.; Ni, Z. J.; Yang, S. J.; Li, X. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl. Catal. B Environ. 2016, 196, 89–99.

38

Li, B. S.; Lai, C.; Zeng, G. M.; Qin, L.; Yi, H.; Huang, D. L.; Zhou, C. Y.; Liu, X. G.; Cheng, M.; Xu, P. et al. Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 2018, 10, 18824–18836.

39

Yang, X.; Li, C.; Wang, J. F.; Zhang, J.; Wang, F. F.; Li, R. G.; Li, C. Graphene dispersed Bi2WO6 nanosheets with promoted interfacial charge separation for visible light photocatalysis. ChemCatChem 2019, 11, 5487–5494.

40

Guo, M. F.; Zhou, Z. B.; Yan, S. N.; Zhou, P. F.; Miao, F.; Liang, S. J.; Wang, J. L.; Cui, X. Y. Bi2WO6-BiOCl heterostructure with enhanced photocatalytic activity for efficient degradation of oxytetracycline. Sci. Rep. 2020, 10, 18401.

41

Zhong, X.; Wu, W. T.; Jie, H. N.; Tang, W. Y.; Chen, D. Y.; Ruan, T.; Bai, H. P. Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction. RSC Adv. 2020, 10, 38024–38032.

42

Wang, W. L.; Zhao, W. L.; Zhang, H. C.; Dou, X. C.; Shi, H. F. 2D/2D step-scheme a-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. Chin. J. Catal. 2021, 42, 97–106.

43

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744.

44

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

45

Mallika, A. N.; Ramachandra Reddy, A.; Venugopal Reddy, K. Structural and optical characterization of Zn0.95−xMg0.05CuxO nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 1528–1534.

46

Zhang, J. K.; Yang, L. L.; Wu, X. X.; Wei, M. B.; Liu, Y. Q.; Gao, C. X.; Yang, J. H.; Ma, Y. Z. Correlation between structural change and electrical transport properties of Fe-doped chrysotile nanotubes under high pressure. J Phys. Condens. Matter 2018, 30, 144008.

47

Etogo, A.; Liu, R.; Ren, J. B.; Qi, L. W.; Zheng, C. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Facile one-pot solvothermal preparation of Mo-doped Bi2WO6 biscuit-like microstructures for visible-light-driven photocatalytic water oxidation. J. Mater. Chem. A 2016, 4, 13242–13250.

48

Maçzka, M.; Macalik, L.; Hermanowicz, K.; Kępiński, L.; Tomaszewski, P. Phonon properties of nanosized bismuth layered ferroelectric material-Bi2WO6. J. Raman Spectrosc. 2010, 41, 1059–1066.

49

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

50

Liu, D. L.; Zhang, C.; Yu, Y. F.; Shi, Y. M.; Yu, Y.; Niu, Z. Q.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603–613.

51

Zhao, Y.; Zhao, Y.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

52

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

53

Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.

54

Li, H. Y.; Wang, D. J.; Wang, P.; Fan, H. M.; Xie, T. F. Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chem. —Eur. J. 2009, 15, 12521–12527.

55

Liu, Y.; Hu, Z. F.; Yu, J. C. Fe enhanced visible-light-driven nitrogen fixation on BiOBr nanosheets. Chem. Mater. 2020, 32, 1488–1494.

56

Lv, Y. H.; Yao, W. Q.; Zong, R. L.; Zhu, Y. F. Fabrication of wide-range-visible photocatalyst Bi2WO6−x nanoplates via surface oxygen vacancies. Sci. Rep. 2016, 6, 19347.

57

Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

58

Zunger, A. Practical doping principles. Appl. Phys. Lett. 2003, 83, 57–59.

59

Zhang, T.; Zhu, Z. L.; Chen, H. N.; Bai, Y.; Xiao, S.; Zheng, X. L.; Xue, Q. Z.; Yang, S. H. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: A combined experimental and theoretical study. Nanoscale 2015, 7, 2933–2940.

60

de Jesus Silva Chaves, M.; de Oliveira Lima, G.; de Assis, M.; de Jesus Silva Mendonça, C.; Pinatti, I. M.; Gouveia, A. F.; Viana Rosa, I. L.; Longo, E.; Almeida, M. A. P.; Rodrigues dos Santos Franco, T. C. Environmental remediation properties of Bi2WO6 hierarchical nanostructure: A joint experimental and theoretical investigation. J. Solid State Chem. 2019, 274, 270–279.

61

Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z. S.; Hansen, J. Ø.; Matthiesen, J.; Blekinge-Rasmussen, A.; Lægsgaard, E.; Hammer, B. et al. The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 2008, 320, 1755–1759.

62

Sun, Y. J.; Wang, H.; Xing, Q.; Cui, W.; Li, J. Y.; Wu, S. J.; Sun, L. D. The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism. Chin. J. Catal. 2019, 40, 647–655.

63

Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K. K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

64

Xu, Z. M.; Deng, X. M.; Chen, Y.; Wen, J. Y.; Shi, L. Y.; Bian, Z. F. Engineering a rapid charge transfer pathway for enhanced photocatalytic removal efficiency of hexavalent chromium over C3N4/NH2-UIO-66 compounds. Sol. RRL 2021, 5, 2000416.

Nano Research
Pages 3365-3371
Cite this article:
Cheng M, Yang L, Li H, et al. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Research, 2021, 14(10): 3365-3371. https://doi.org/10.1007/s12274-021-3605-7
Topics:

899

Views

35

Crossref

31

Web of Science

33

Scopus

4

CSCD

Altmetrics

Received: 11 March 2021
Revised: 17 May 2021
Accepted: 19 May 2021
Published: 04 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return