AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer

Li Ye1,§Hongmei Liu1,2,§Xin Fei2,§Ding Ma2Xiaozhen He2Qianyun Tang1Xue Zhao2Hanbing Zou2Xiaojing Chen2Xianming Kong2,3( )Peifeng Liu1,2( )
State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
Central Laboratory, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
Shanghai University of Medicine and Health SciencesShanghai201318China

§ Li Ye, Hongmei Liu, and Xin Fei contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Dendrimer, such as dendrigraft poly-L-lysine (DGL) polymers, with high surface charge density, well-defined structure, and narrow poly-dispersity is often employed as a gene vector, but its transfection efficiency is still partially inhibited due to poor endosomal escape ability. Herein, we used a surface modification strategy to enhance the endosomal escape ability of DGL polymers, and thus improved its gene transfection efficiency. A library of phenylboronic acid (PBA) modified DGL polymers (PBA-DGLs) was designed to screen efficient small interfering RNA (siRNA) vectors. The lead candidate screened from the library shown a capability of inducing nearly 90% gene silencing in MDA-MB-231 cells. The study of the transfection mechanism revealed that PBA modification not only improves siRNA cellular uptake, but, more importantly, endows DGL polymers the ability of endosomal escape. One of the top candidates from polyplexes was further shielded with hyaluronic acid to construct targeted nanoparticles, and the yielding nanoparticles significantly suppressed the tumor growth in a breast cancer model by effective siRNA delivery. This research provides a general and effective strategy to enhance the endosomal escape and transfection efficiency of dendrimer.

Electronic Supplementary Material

Download File(s)
12274_2021_3616_MOESM1_ESM.pdf (6.6 MB)

References

1

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541-555.

2

Setten, R. L.; Rossi, J. J.; Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019, 18, 421-446.

3

Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581-593.

4

Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 2011, 151, 220-228.

5

Yang, J. P.; Zhang, Q.; Chang, H.; Cheng, Y. Y. Surface-engineered dendrimers in gene delivery. Chem. Rev. 2015, 115, 5274-5300.

6

Pei, D. H.; Buyanova, M. Overcoming endosomal entrapment in drug delivery. Bioconjugate Chem. 2019, 30, 273-283.

7

Endoh, T.; Ohtsuki, T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Deliv. Rev. 2009, 61, 704-709.

8

Zhu, J.; Qiao, M. X.; Wang, Q.; Ye, Y. Q.; Ba, S.; Ma, J. J.; Hu, H. Y.; Zhao, X. L.; Chen, D. W. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials 2018, 162, 47-59.

9

Hwang, H. S.; Hu, J.; Na, K.; Bae, Y. H. Role of polymeric endosomolytic agents in gene transfection: A comparative study of poly(L-lysine) grafted with monomeric L-histidine analogue and poly(L-histidine). Biomacromolecules 2014, 15, 3577-3586.

10

Mohammed, A. F.; Abdul-Wahid, A.; Huang, E. H. B.; Bolewska- Pedyczak, E.; Cydzik, M.; Broad, A. E.; Gariépy, J. The Pseudomonas aeruginosa exotoxin a translocation domain facilitates the routing of CPP-protein cargos to the cytosol of eukaryotic cells. J. Control. Release 2012, 164, 58-64.

11

Wadia, J. S.; Stan, R. V.; Dowdy, S. F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 2004, 10, 310-315.

12

Li, M.; Tao, Y.; Shu, Y. L.; LaRochelle, J. R.; Steinauer, A.; Thompson, D.; Schepartz, A.; Chen, Z. Y.; Liu, D. R. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. J. Am. Chem. Soc. 2015, 137, 14084-14093.

13

Neundorf, I.; Rennert, R.; Hoyer, J.; Schramm, F.; Löbner, K.; Kitanovic, I.; Wölfl, S. Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals 2009, 2, 49-65.

14

Huang, R. Q.; Liu, S. H.; Shao, K.; Han, L.; Ke, W. L.; Liu, Y.; Li, J. F.; Huang, S. X.; Jiang, C. Evaluation and mechanism studies of pegylated dendrigraft poly-l-lysines as novel gene delivery vectors. Nanotechnology 2010, 21, 265101.

15

Francoia, J. P.; Vial, L. Everything you always wanted to know about poly-L-lysine dendrigrafts (but were afraid to ask). Chem. —Eur. J. 2018, 24, 2806-2814.

16

Liu, Y.; An, S.; Li, J. F.; Kuang, Y.; He, X.; Guo, Y. B.; Ma, H. J.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in alzheimer's disease mice. Biomaterials 2016, 80, 33-45.

17

Hong, T.; Wei, Y. Z.; Xue, X. M.; Li, Y. Y.; Dong, H. Q.; Guo, X. Y.; Shi, X. Y.; He, B. A novel anti-coagulative nanocomplex in delivering miRNA-1 inhibitor against microvascular obstruction of myocardial infarction. Adv. Healthc. Mater. 2020, 9, 1901783.

18

Cun, X. L.; Chen, J. T.; Li, M. M.; He, X.; Tang, X.; Guo, R.; Deng, M.; Li, M.; Zhang, Z. R.; He, Q. Tumor-associated fibroblast-targeted regulation and deep tumor delivery of chemotherapeutic drugs with a multifunctional size-switchable nanoparticle. ACS Appl. Mater. Interfaces 2019, 11, 39545-39559.

19

Hofman, J.; Buncek, M.; Haluza, R.; Streinz, L.; Ledvina, M.; Cigler, P. In vitro transfection mediated by dendrigraft poly(L-lysines): The effect of structure and molecule size. Macromol. Biosci. 2013, 13, 167-176.

20

Ryu, J. H.; Lee, G. J.; Shih, Y. R. V.; Kim, T. I.; Varghese, S. Phenylboronic acid-polymers for biomedical applications. Curr. Med. Chem. 2019, 26, 6797-6816.

21

Springsteen, G.; Wang, B. H. A detailed examination of boronic acid- diol comlexation. Tetrahedron 2002, 58, 5291-5300.

22

Wang, J.; Wu, W.; Zhang, Y. J.; Wang, X.; Qian, H. Q.; Liu, B. R.; Jiang, X. Q. The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials 2014, 35, 866-878.

23

Liu, C. Y.; Shao, N. M.; Wang, Y. T.; Cheng, Y. Y. Clustering small dendrimers into nanoaggregates for efficient DNA and siRNA delivery with minimal toxicity. Adv. Healthc. Mater. 2016, 5, 584-592.

24

Liu, H. M.; Chang, H.; Lv, J.; Jiang, C.; Li, Z. X.; Wang, F.; Wang, H.; Wang, M. M.; Liu, C. Y.; Wang, X. Y. et al. Screening of efficient siRNA carriers in a library of surface-engineered dendrimers. Sci. Rep. 2016, 6, 25069.

25

Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.

26

Ma, D.; Liu, H. M.; Zhao, P. P.; Ye, L.; Zou, H. B.; Zhao, X.; Dai, H. L.; Kong, X. M.; Liu, P. F. Programing assembling/releasing multifunctional miRNA nanomedicine to treat prostate cancer. ACS Appl. Mater. Interfaces 2020, 12, 9032-9040.

27

Ji, M. Y.; Li, P.; Sheng, N.; Liu, L. L.; Pan, H.; Wang, C.; Cai, L. T.; Ma, Y. F. Sialic acid-targeted nanovectors with phenylboronic acid- grafted polyethylenimine robustly enhance siRNA-based cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 9565-9576.

28

Naito, M.; Ishii, T.; Matsumoto, A.; Miyata, K.; Miyahara, Y.; Kataoka, K. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem., Int. Ed. 2012, 51, 10751-10755.

29

Lee, K. S.; Burke, T. R. Jr.; Park, J. E.; Bang, J. K.; Lee, E. Recent advances and new strategies in targeting Plk1 for anticancer therapy. Trends Pharmacol. Sci. 2015, 36, 858-877.

30

Jiang, C. P.; Qi, Z. T.; Jia, H. B.; Huang, Y. L.; Wang, Y. B.; Zhang, W. L.; Wu, Z. M.; Yang, H.; Liu, J. P. ATP-responsive low-molecular- weight polyethylenimine-based supramolecular assembly via host- guest interaction for gene delivery. Biomacromolecules 2019, 20, 478-489.

31

Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc. 2013, 135, 15501-15507.

32

Fan, W. W.; Xia, D. N.; Zhu, Q. L.; Li, X. Y.; He, S. F.; Zhu, C. L.; Guo, S. Y.; Hovgaard, L.; Yang, M. S.; Gan, Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018, 151, 13-23.

33

Piest, M.; Engbersen, J. F. J. Role of boronic acid moieties in poly(amido amine)s for gene delivery. J. Control. Release 2011, 155, 331-340.

34

Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003, 125, 3493-3502.

35

Zhao, D.; Xu, J. Q.; Yi, X. Q.; Zhang, Q.; Cheng, S. X.; Zhuo, R. X.; Li, F. pH-activated targeting drug delivery system based on the selective binding of phenylboronic acid. ACS Appl. Mater. Interfaces 2016, 8, 14845-14854.

36

Kim, K.; Ryu, K.; Kim, T. I. Cationic methylcellulose derivative with serum-compatibility and endosome buffering ability for gene delivery systems. Carbohydr. Polym. 2014, 110, 268-277.

37

Shim, M. S.; Wang, X.; Ragan, R.; Kwon, Y. J. Dynamics of nucleic acid/cationic polymer complexation and disassembly under biologically simulated conditions using in situ atomic force microscopy. Microsc. Res. Tech. 2010, 73, 845-856.

38

Zhou, Z. W.; Zhang, Q. Y.; Zhang, M. H.; Li, H. P.; Chen, G.; Qian, C. G.; Oupicky, D.; Sun, M. J. ATP-activated decrosslinking and charge- reversal vectors for siRNA delivery and cancer therapy. Theranostics 2018, 8, 4604-4619.

39

Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. Atp-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

40

Wickens, J. M.; Alsaab, H. O.; Kesharwani, P.; Bhise, K.; Amin, M. C. I.; Tekade, R. K.; Gupta, U.; Iyer, A. K. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today 2017, 22, 665-680.

41

Iwanaga, M.; Kodama, Y.; Muro, T.; Nakagawa, H.; Kurosaki, T.; Sato, K.; Nakamura, T.; Kitahara, T.; Sasaki, H. Biocompatible complex coated with glycosaminoglycan for gene delivery. J. Drug Target. 2017, 25, 370-378.

42

Lv, J.; He, B.W.; Yu, J. W.; Wang, Y. T.; Wang, C. P.; Zhang, S.; Wang, H.; Hu, J. J.; Zhang, Q.; Cheng, Y. Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials 2018, 182, 167-175.

Nano Research
Pages 1135-1144
Cite this article:
Ye L, Liu H, Fei X, et al. Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer. Nano Research, 2022, 15(2): 1135-1144. https://doi.org/10.1007/s12274-021-3616-4
Topics:

1084

Views

26

Crossref

25

Web of Science

26

Scopus

1

CSCD

Altmetrics

Received: 06 April 2021
Revised: 20 May 2021
Accepted: 24 May 2021
Published: 28 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return