Graphical Abstract

Superatoms are considered as promising building blocks for customizing superatomic molecules and cluster-assembly nanomaterials due to their tunable electronic structures and functionalities. Electron counting rules, which mainly adjust the shell-filling of clusters, are classical strategies in designing superatoms. Here, by employing the density functional theory (DFT) calculations, we proved that the 1, 4-phenylene diisocyanide (CNC6H4NC) ligand could dramatically reduce the adiabatic ionization potentials (AIPs) of the aluminum-based clusters, which have 39, 40, and 41 valence electrons, respectively, to give rise to superalkali species without changing their shell-filling. Moreover, the rigid structure of the ligand can be used as a bridge firmly linking the same or different aluminum-based clusters to form superatomic molecules and nanowires. In particular, the bridging process was observed to enhance their nonlinear optical (NLO) responses, which can be further promoted by the oriented external electric field (OEEF). Also, the stable cluster-assembly XAl12(CNC6H4NC) (X = Al, C, and P) nanowires were constructed, which exhibit strong absorption in the visible light region. These findings not only suggest an effective ligand-field strategy in superatom design but also unveil the geometrical and electronic evolution from the CNC6H4NC-based superatoms to superatomic molecules and nanomaterials.
Khanna, S. N.; Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 1993, 69, 1664-1667.
Bergeron, D. E.; Castleman, A. W. Jr.; Morisato, T.; Khanna, S. N. Formation of Al13I-: Evidence for the superhalogen character of Al13. Science 2004, 304, 84-87.
Castleman, A. W. Jr. From elements to clusters: The periodic table revisited. J. Phys. Chem. Lett. 2011, 2, 1062-1069.
Jena, P. Beyond the periodic table of elements: The role of superatoms. J. Phys. Chem. Lett. 2013, 4, 1432-1442.
Jena, P.; Sun, Q. Super atomic clusters: Design rules and potential for building blocks of materials. Chem. Rev. 2018, 118, 5755-5870.
Wu, M. M.; Wang, H. P.; Ko, Y. J.; Wang, Q.; Sun, Q.; Kiran, B.; Kandalam, A. K.; Bowen, K. H.; Jena, P. Manganese-based magnetic superhalogens. Angew. Chem. , Int. Ed. 2011, 50, 2568-2572.
Sikorska, C.; Smuczyńska, S.; Skurski, P.; Anusiewicz, I. BX4- and AlX4- superhalogen anions (X = F, Cl, Br): An ab initio study. Inorg. Chem. 2008, 47, 7348-7354.
Chen, J.; Yang, H.; Wang, J.; Cheng, S. B. Revealing the effect of the oriented external electronic field on the superatom-polymeric Zr3O3 cluster: Superhalogen modulation and spectroscopic characteristics. Spectrochim. Acta Part A 2020, 237, 118400.
Hou, N.; Wu, D.; Li, Y.; Li, Z. R. Lower the electron affinity by halogenation: An unusual strategy to design superalkali cations. J. Am. Chem. Soc. 2014, 136, 2921-2927.
Chauhan, V.; Reber, A. C.; Khanna, S. N. Strong Lowering of ionization energy of metallic clusters by organic ligands without changing shell filling. Nat. Commun. 2018, 9, 2357.
Li, J.; Huang, H. C.; Wang, J.; Zhao, Y.; Chen, J.; Bu, Y. X.; Cheng, S. B. Polymeric tungsten carbide nanoclusters: Structural evolution, ligand modulation, and assembled nanomaterials. Nanoscale 2019, 11, 19903-19911.
Zhao, T. S.; Wang, Q.; Jena, P. Rational design of super-alkalis and their role in CO2 activation. Nanoscale 2017, 9, 4891-4897.
Peppernick, S. J.; Gunaratne, K. D. D.; Castleman, A. W. Jr. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts. Proc. Natl. Acad. Sci. USA 2010, 107, 975-980.
Reveles, J. U.; Clayborne, P. A.; Reber, A. C.; Khanna, S. N.; Pradhan, K.; Sen, P.; Pederson, M. R. Designer magnetic superatoms. Nat. Chem. 2009, 1, 310-315.
Cheng, S. B.; Berkdemir, C.; Castleman, A. W. Jr. Mimicking the magnetic properties of rare earth elements using superatoms. Proc. Natl. Acad. Sci. USA 2015, 112, 4941-4945.
Gutsev, G. L.; Boldyrev, A. I. DVM Xα calculations on the electronic structure of "superalkali" cations. Chem. Phys. Lett. 1982, 92, 262-266.
Ding, L. P.; Yang, L. T.; Shao, P.; Tiandong, Y. H.; Zhang, F. H.; Lu, C. Structures, mobilities, and electronic properties of functionalized silicene: Superhalogen BO2 adsorption. Inorg. Chem. 2020, 59, 5041-5049.
Chen, J.; Wei, Q.; Yang, H.; Cheng, S. B. On the structures, electronic properties, and superhalogen regulation of the MnB6- cluster: A density functional theory investigation. Chem. Phys. Lett. 2020, 754, 137723.
Li, J.; Zhao, Y.; Bu, Y. F.; Chen, J.; Wei, Q; Cheng, S. B. On the theoretical construction of Nb2N2-based superatoms by external field strategies. Chem. Phys. Lett. 2020, 754, 137709.
Knight, W. D.; Clemenger, K.; De Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141-2143.
Mingos, D. M. P. A general theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci. 1972, 236, 99-102.
Gin, S.; Child, B. Z.; Jena, P. Organic superhalogens. ChemPhysChem 2014, 15, 2903-2908.
Han, Z.; Zhao, X. L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z. Y.; Zang, S. Q. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020, 13, 3248-3252.
Shen, H.; Xiang, S. J.; Xu, Z.; Liu, C.; Li, X. H.; Sun, C. F.; Lin, S. C.; Teo, B. K.; Zheng, N. F. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908-1911.
Chen, J.; Yang, H.; Wang, J.; Cheng, S. B. Theoretical investigations on the d-p hybridized aromaticity, photoelectron spectroscopy and neutral salts of the LaX2- (X = Al, Ga, In) clusters. Spectrochim. Acta Part A 2018, 203, 132-138.
Cheng, S. B.; Harmon, C. L.; Yang, H.; Castleman, A. W. Jr. Electronic structure of the diatomic VO anion: A combined photoelectron- imaging spectroscopic and theoretical investigation. Phys. Rev. A 2016, 94, 062506.
Zhao, Y.; Wang, J.; Huang, H. C.; Li, J.; Dong, X. X.; Chen, J.; Bu, Y. X.; Cheng, S. B. Tuning the electronic properties and performance of low-temperature CO oxidation of the gold cluster by oriented external electronic field. J. Phys. Chem. Lett. 2020, 11, 1093-1099.
Li, J.; Wang, J.; Chen, J.; Bu, Y. X.; Cheng, S. B. Observation of "outlaw" dual aromaticity in unexpectedly stable open-shell metal clusters caused by near-degenerate molecular orbital coupling. CCS Chem. 2020, 2, 1913-1920.
Cheng, S. B.; Berkdemir, C.; Melko, J. J.; Castleman, A. W. Jr. S-P coupling induced unusual open-shell metal clusters. J. Am. Chem. Soc. 2014, 136, 4821-4824.
Cheng, S. B.; Berkdemir, C.; Castleman, A. W. Jr. Observation of d-p hybridized aromaticity in lanthanum-doped boron clusters. Phys. Chem. Chem. Phys. 2014, 16, 533-539.
Reber, A. C.; Khanna, S. N.; Castleman, A. W. Jr. Superatom compounds, clusters, and assemblies: Ultra alkali motifs and architectures. J. Am. Chem. Soc. 2007, 129, 10189-10194.
Sun, W. M.; Li, C. Y.; Kang, J.; Wu, D.; Li, Y.; Ni, B. L.; Li, X. H.; Li, Z. R. Superatom compounds under oriented external electric fields: Simultaneously enhanced bond energies and nonlinear optical responses. J. Phys. Chem. C 2018, 122, 7867-7876.
Sun, W. M.; Ni, B. L.; Wu, D.; Lan, J. M.; Li, C. Y.; Li, Y.; Li, Z. R. Designing alkalides with considerable nonlinear optical responses and high stability based on the facially polarized janus all-cis-1, 2, 3, 4, 5, 6-hexafluorocyclohexane. Organometallics 2017, 36, 3352-3359.
Wang, J. J.; Zhou, Z. J.; Bai, Y.; Liu, Z. B.; Li, Y.; Wu, D.; Chen, W.; Li, Z. R.; Sun, C. C. The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: Dramatic superalkali effect on the nonlinear optical property. J. Mater. Chem. 2012, 22, 9652-9657.
Liu, Q. M.; Xu, C.; Wu, X.; Cheng, L. J. Electronic shells of a tubular Au26 cluster: A cage-cage superatomic molecule based on spherical aromaticity. Nanoscale 2019, 11, 13227-13232.
Reber, A. C.; Chauhan, V.; Bista, D.; Khanna, S. N. Superatomic molecules with internal electric fields for light harvesting. Nanoscale 2020, 12, 4736-4742.
Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif- mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501-507.
Song, Y. B.; Jin, S.; Kang, X.; Xiang, J.; Deng, H. J.; Yu, H. Z.; Zhu, M. Z. How a single electron affects the properties of the "non- superatom" Au25 nanoclusters. Chem. Mater. 2016, 28, 2609-2617.
Gan, Z. B.; Chen, J. S.; Wang, J.; Wang, C. M.; Li, M. B.; Yao, C. H.; Zhuang, S. L.; Xu, A.; Li, L. L.; Wu, Z. K. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nat. Commun. 2017, 8, 14739.
Champsaur, A. M.; Mézière, C.; Allain, M.; Paley, D. W.; Steigerwald, M. L.; Nuckolls, C.; Batail, P. Weaving nanoscale cloth through electrostatic templating. J. Am. Chem. Soc. 2017, 139, 11718-11721.
Bear, J. L.; Han, B.; Wu, Z.; Van Caemelbecke, E.; Kadish, K. M. Synthesis, electrochemistry, and spectroscopic characterization of bis-dirhodium complexes linked by axial ligands. Inorg. Chem. 2001, 40, 2275-2281.
Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158-6170.
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
Li, X.; Wang, L. S. Experimental search and characterization of icosahedral clusters: Al12X - (X = C, Ge, Sn, Pb). Phys. Rev. B 2002, 65, 153404.
Akutsu, M.; Koyasu, K.; Atobe, J.; Hosoya, N.; Miyajima, K.; Mitsui, M.; Nakajima, A. Experimental and theoretical characterization of aluminum-based binary superatoms of Al12X and their cluster salts. J. Phys. Chem. A 2006, 110, 12073-12076.
Chauhan, V.; Reber, A. C.; Khanna, S. N. Metal chalcogenide clusters with closed electronic shells and the electronic properties of alkalis and halogens. J. Am. Chem. Soc. 2017, 139, 1871-1877.
Buckingham, A. D.; Orr, B. J. Molecular hyperpolarisabilities. Q. Rev., Chem. Soc. 1967, 21, 195-212.
Mclean, A. D.; Yoshimine, M. Theory of molecular polarizabilities. J. Chem. Phys. 1967, 47, 1927-1935.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.
Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non- Cryst. Solids 1995, 193, 222-229.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Li, P.; Zhang, C. W.; Lian, J.; Ren, M. J.; Wang, P. J.; Yu, X. H.; Gao, S. First-principle study of optical properties of Cu-doped CdS. Opt. Commun. 2013, 295, 45-52.
Wang, J.; Zhao, Y.; Li, J.; Huang, H. C.; Chen, J.; Cheng, S. B. Unveiling the electronic structures and ligation effect of the superatom-polymeric zirconium oxide clusters: A computational study. Phys. Chem. Chem. Phys. 2019, 21, 14865-14872.
Bauer, S.; Hunger, C.; Bodensteiner, M.; Ojo, W. S.; Cros-Gagneux, A.; Chaudret, B.; Nayral, C.; Delpech, F.; Scheer, M. Transition-metal complexes containing parent phosphine or phosphinyl ligands and their use as precursors for phosphide nanoparticles. Inorg. Chem. 2014, 53, 11438-11446.
Karimova, N. V.; Aikens, C. M. Optical properties of small gold clusters Au8L82+ (L = PH3, PPh3): Magnetic circular dichroism spectra. J. Phys. Chem. C 2017, 121, 19478-19489.
Omidvar, A. Design of a novel series of donor-acceptor frameworks via superalkali-superhalogen assemblage to improve the nonlinear optical responses. Inorg. Chem. 2018, 57, 9335-9347.
Huang, S. Y.; Liao, K. T.; Peng, B.; Luo, Q. On the potential of using the Al7 superatom as an excess electron acceptor to construct materials with excellent nonlinear optical properties. Inorg. Chem. 2016, 55, 4421-4427.
Shen, L.; Yang, S. W.; Ng, M. F.; Ligatchev, V.; Zhou, L. P.; Feng, Y. P. Charge-transfer-based mechanism for half-metallicity and ferromagnetism in one-dimensional organometallic sandwich molecular wires. J. Am. Chem. Soc. 2008, 130, 13956-13960.
Wu, X. J.; Zeng, X. C. Double metallocene nanowires. J. Am. Chem. Soc. 2009, 131, 14246-14248.
Li, X. L.; Lv, H. F.; Da, J.; Ma, L.; Zeng, X. C.; Wu, X. J.; Yang, J. L. Half-metallicity in one-dimensional metal trihydride molecular nanowires. J. Am. Chem. Soc. 2017, 139, 6290-6293.
Guo, Z. P.; Chen, Q.; Yuan, J. N.; Xia, K.; Wang, X. M.; Sun, J. Ferromagnetic semiconducting VI3 single-chain nanowire. J. Phys. Chem. C 2020, 124, 2096-2103.
Mu, Z. Q.; Yu, H. C.; Zhang, M.; Wu, A. M.; Qi, G. M.; Chu, P. K.; An, Z. H.; Di, Z. F.; Wang, X. Multiband hot photoluminescence from nanocavity-embedded silicon nanowire arrays with tunable wavelength. Nano Lett. 2017, 17, 1552-1558.
Standing, A.; Assali, S.; Gao, L.; Verheijen, M. A.; van Dam, D.; Cui, Y. C.; Notten, P. H. L.; Haverkort, J. E. M.; Bakkers, E. P. A. M. Efficient water reduction with gallium phosphide nanowires. Nat. Commun. 2015, 6, 7824.
Wang, Y. P.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye sensitized solar cells via the incorporation of one dimensional luminescent BaWO4: Eu3+ nanowires. Chem. Commun. 2016, 52, 11124-11126.
Lalitha, S.; Karazhanov, S. Z.; Ravindran, P.; Senthilarasu, S.; Sathyamoorthy, R.; Janabergenov, J. Electronic structure, structural and optical properties of thermally evaporated CdTe thin films. Phys. B 2007, 387, 227-238.
Li, X. X.; Li, Z. Y.; Yang, J. L. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys. Rev. Lett. 2014, 112, 018301.
Li, J. J.; Li, B.; Li, J. J.; Liu, J. L.; Wang, L.; Zhang, H. W.; Zhang, Z. H.; Zhao, B. Visible-light-driven photocatalyst of La-N-codoped TiO2 nano-photocatalyst: Fabrication and its enhanced photocatalytic performance and mechanism. J. Ind. Eng. Chem. 2015, 25, 16-21.