Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction

Ting PanIslam E. KhalilZhiling XuHongfeng LiXinglong ZhangGengwu XiaoWeina ZhangYu Shen()Fengwei Huo()
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech UniversityNanjing211816China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Fabrication of multifunctional catalysts has always been the pursuit of synthetic chemists due to their efficiency, cost-effectiveness, and environmental friendliness. However, it is difficult to control multi-step reactions in one-pot, especially the spatial compartmentalization of incompatible active sites. Herein, we constructed metal-organic framework (MOF) composites which regulate the location distribution of metal nanoparticles according to the reaction path and coupled with the diffusion of substrates to achieve tandem reaction. The designed UiO-66-Pt-Au catalyst showed good activity and selectivity in hydrosilylation- hydrogenation tandem reaction, because the uniform microporous structures can control the diffusion path of reactants and intermediates, and Pt and Au nanoparticles were arranged in core-shell spatial distribution in UiO-66. By contrast, the low selectivity of catalysts with random deposition and physical mixture demonstrated the significance of artificial control to the spatial compartmentalization of active sites in tandem catalytic reactions, which provides a powerful approach for designing high- performance and multifunctional heterogeneous catalysts.

Electronic Supplementary Material

Download File(s)
12274_2021_3621_MOESM1_ESM.pdf (3.8 MB)

References

1

Zhao, X. S.; Bao, X. Y.; Guo, W. P.; Lee, F. Y. Immobilizing catalysts on porous materials. Mater. Today 2006, 9, 32-39.

2

Wilson, K.; Lee, A. F. Rational design of heterogeneous catalysts for biodiesel synthesis. Catal. Sci. Technol. 2012, 2, 884-897.

3

Rudroff, F.; Mihovilovic, M. D.; Gröger, H.; Snajdrova, R.; Iding, H.; Bornscheuer, U. T. Opportunities and challenges for combining chemo-and biocatalysis. Nat. Catal. 2018, 1, 12-22.

4

Litman, Z. C.; Wang, Y.; Zhao, H.; Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 2018, 560, 355-359.

5

Lee, J. M.; Na, Y.; Han, H.; Chang, S. Cooperative multi-catalyst systems for one-pot organic transformations. Chem. Soc. Rev. 2004, 33, 302-312.

6

Climent, M. J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 2011, 111, 1072-1133.

7

Climent, M. J.; Corma, A.; Iborra, S.; Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 2014, 4, 870-891.

8

Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. 2016, 7, 866-880.

9

He, C.; Wu, Q. J.; Mao, M. J.; Zou, Y. H.; Liu, B. T.; Huang, Y. B.; Cao, R. Multifunctional gold nanoparticles@imidazolium-based cationic covalent triazine frameworks for efficient tandem reactions. CCS Chem. 2020, 2, 2368-2380.

10

Lee, L. C.; Lu, J.; Weck, M.; Jones, C. W. Acid-base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction. ACS Catal. 2016, 6, 784-787.

11

Sancheti, S. P.; Urvashi; Shah, M. P.; Patil, N. T. Ternary catalysis: A stepping stone toward multicatalysis. ACS Catal. 2020, 10, 3462-3489.

12

Li, H.; Bhadury, P. S.; Riisager, A.; Yang, S. One-pot transformation of polysaccharides via multi-catalytic processes. Catal. Sci. Technol. 2014, 4, 4138-4168.

13

Li, X. L.; Zhang, B. Y.; Tang, L. L.; Goh, T. W.; Qi, S. Y.; Volkov, A.; Pei, Y. C.; Qi, Z. Y.; Tsung, C. K.; Stanley, L. et al. Cooperative multifunctional catalysts for nitrone synthesis: Platinum nanoclusters in amine-functionalized metal-organic frameworks. Angew. Chem. , Int. Ed. 2017, 56, 16371-16375.

14

Corma, A. Heterogeneous catalysis: Understanding for designing, and designing for applications. Angew. Chem. , Int. Ed. 2016, 55, 6112-6113.

15

Merino, E.; Verde-Sesto, E.; Maya, E. M.; Iglesias, M.; Sánchez, F.; Corma, A. Synthesis of structured porous polymers with acid and basic sites and their catalytic application in cascade-type reactions. Chem. Mater. 2013, 25, 981-988.

16

Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 2005, 105, 1001-1020.

17

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

18

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.

19

Cui, X. L.; Chen, K. J.; Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141-144.

20

Li, B.; Wen, H. M.; Zhou, W.; Xu, J. Q.; Chen, B. L. Porous metal- organic frameworks: Promising materials for methane storage. Chem 2016, 1, 557-580.

21

Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M. et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 2015, 527, 357-361.

22

Wang, C. H.; Liu, X. L.; Demir, N. K.; Chen, J. P.; Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 2016, 45, 5107-5134.

23

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1-28.

24

Hu, X. J.; Li, Z. X.; Xue, H.; Huang, X. S.; Cao, R.; Liu, T. F. Designing a bifunctional brønsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks. CCS Chem. 2019, 2, 616-622.

25

Wang, B. Q.; Zhao, M. T.; Li, L. X.; Huang, Y.; Zhang, X.; Guo, C.; Zhang, Z. C.; Cheng, H. F.; Liu, W. X.; Shang, J. et al. Ultra-thin metal-organic framework nanoribbons. Natl. Sci. Rev. 2020, 7, 46-52.

26

Qin, Y. J.; Han, X.; Li, Y. P.; Han, A. J.; Liu, W. X.; Xu, H. J.; Liu, J. F. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal. 2020, 10, 5973-5978.

27

Lian, X. Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386-3401.

28

Dong, M. J.; Zhao, M.; Ou, S.; Zou, C.; Wu, C. D. A luminescent dye@MOF platform: Emission fingerprint relationships of volatile organic molecules. Angew. Chem. , Int. Ed. 2014, 53, 1575-1579.

29

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.

30

O'Neill, L. D.; Zhang, H. F.; Bradshaw, D. Macro-/microporous MOF composite beads. J. Mater. Chem. 2010, 20, 5720-5726.

31

Guan, J. J.; Hu, Y.; Wang, Y.; Li, H. F.; Xu, Z. L.; Zhang, T.; Wu, P.; Zhang, S. Y.; Xiao, G. W.; Ji, W. L. et al. Controlled encapsulation of functional organic molecules within metal-organic frameworks: In situ crystalline structure transformation. Adv. Mater. 2017, 29, 1606290.

32

Xu, Z. L.; Xiao, G. W.; Li, H. F.; Shen, Y.; Zhang, J.; Pan, T.; Chen, X. Y.; Zheng, B.; Wu, J. S.; Li, S. et al. Compartmentalization within self-assembled metal-organic framework nanoparticles for tandem reactions. Adv. Funct. Mater. 2018, 28, 1802479.

33

Shahid, S.; Nijmeijer, K.; Nehache, S.; Vankelecom, I.; Deratani, A.; Quemener, D. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. J. Membr. Sci. 2015, 492, 21-31.

34

Zhang, Q.; Liu, B. M.; Wang, J.; Li, Q. F.; Li, D. X.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Zheng, M. Y. et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 2020, 5, 2919-2926.

35

Chen, L. Y.; Huang, W. H.; Wang, X. J.; Chen, Z. J.; Yang, X. F.; Luque, R.; Li, Y. W. Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks. Chem. Commun. 2017, 53, 1184-1187.

36

Chen, J. Z.; Liu, R. L.; Guo, Y. Y.; Chen, L. M.; Gao, H. Selective hydrogenation of biomass-based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal- organic frameworks. ACS Catal. 2015, 5, 722-733.

37

Li, Y. A.; Yang, S.; Liu, Q. K.; Chen, G. J.; Ma, J. P.; Dong, Y. B. Pd(0)@UiO-68-AP: Chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations. Chem. Commun. 2016, 52, 6517-6520.

38

Zhang, W. N.; Liu, Y. Y.; Lu, G.; Wang, Y.; Li, S. Z.; Cui, C. L.; Wu, J.; Xu, Z. L.; Tian, D. B.; Huang, W. et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923-2929.

39

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.

40

Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262-5284.

41

Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

42

Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49, 9449-9451.

43

Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632-6640.

44

Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056-4060.

45

Shen, Y.; Pan, T.; Wu, P.; Huang, J. W.; Li, H. F.; Khalil, I. E.; Li, S.; Zheng, B.; Wu, J. S.; Wang, Q. et al. Regulating electronic status of platinum nanoparticles by metal-organic frameworks for selective catalysis. CCS Chem. 2020, 2, 1607-1614.

46

Liu, Y.; Shen, Y.; Zhang, W. N.; Weng, J. N.; Zhao, M. T.; Zhu, T. S.; Chi, Y. R.; Yang, Y. H.; Zhang, H.; Huo, F. W. Engineering channels of metal-organic frameworks to enhance catalytic selectivity. Chem. Commun. 2019, 55, 11770-11773.

47

Zhao, M. Q.; Crooks, R. M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. , Int. Ed. 1999, 38, 364-366.

48

Schanke, D.; Vada, S.; Blekkan, E. A.; Hilmen, A. M.; Hoff, A.; Holmen, A. Study of Pt-promoted cobalt CO hydrogenation catalysts. J. Catal. 1995, 156, 85-95.

49

Corma, A.; González-Arellano, C.; Iglesias, M.; Sánchez, F. Gold nanoparticles and gold(Ⅲ) complexes as general and selective hydrosilylation catalysts. Angew. Chem. , Int. Ed. 2007, 46, 7820-7822.

50

Kidonakis, M.; Stratakis, M. Ligandless regioselective hydrosilylation of allenes catalyzed by gold nanoparticles. Org. Lett. 2015, 17, 4538-4541.

51

Şanlı, L. I.; Bayram, V.; Yarar, B.; Ghobadi, S.; Gürsel, S. A. Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation-reduction methods. Int. J. Hydrog. Energy 2016, 41, 3414-3427.

52

Wang, L. L.; Zhu, G. H.; Yu, W.; Zeng, J.; Yu, X. X.; Li, Q.; Xie, H. Q. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Sol. Energy Mater. Sol. Cells 2018, 184, 1-8.

53

Wang, C.; DeKrafft, K. E.; Lin, W. B. Pt nanoparticles@photoactive metal−organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211-7214.

54

Xu, Z. D.; Yang, L. Z.; Xu, C. L. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438-3444.

55

Chen, X. Y.; Qian, P. P.; Zhang, T.; Xu, Z. L.; Fang, C. Z.; Xu, X. J.; Chen, W. Z.; Wu, P.; Shen, Y.; Li, S. et al. Catalyst surfaces with tunable hydrophilicity and hydrophobicity: Metal-organic frameworks toward controllable catalytic selectivity. Chem. Commun. 2018, 54, 3936-3939.

56

Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@ nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size-and shape-selective reactions. Nano Res. 2017, 10, 3826-3835.

57

Wei, Y. H.; Soh, S.; Apodaca, M. M.; Kim, J.; Grzybowski, B. A. Sequential reactions directed by core/shell catalytic reactors. Small 2010, 6, 857-863.

58

Zuo, C. C.; Wei, W. J.; Zhou, Q.; Wu, S. P.; Li, S. J. Artificial active nanoreactor with nature-inspired sequential catalytic ability. ChemistrySelect 2017, 2, 6149-6153.

59
Grzybowski, B. A. Chemistry in Motion: Reaction Diffusion Systems for Micro and Nanotechnology; John Wiley & Sons, Ltd: New York, 2009.
60

Navalón, S.; Álvaro, M.; Dhakshinamoorthy, A.; García, H. Encapsulation of metal nanoparticles within metal-organic frameworks for the reduction of nitro compounds. Molecules 2019, 24, 3050.

Nano Research
Pages 1178-1182
Cite this article:
Pan T, Khalil IE, Xu Z, et al. Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction. Nano Research, 2022, 15(2): 1178-1182. https://doi.org/10.1007/s12274-021-3621-7
Topics:
Metrics & Citations  
Article History
Copyright
Return