Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Certain chemo drugs have been reported to potentially induce tumor-specific immune recognition by triggering immunogenic cell death (ICD), which provides a promising alternative way for cancer immunotherapy. However, the immunogenic effects of such treatments are still weak and robust systemic antitumor immune responses are rarely seen when these agents were used alone. Herein, we proposed a trinity immune enhancing nanoparticles (TIENs) for boosting antitumor immune responses of chemo agents. The TIENs was constructed with Food and Drug Administration (FDA) approved polylactic acid (PLA), canonical proton-sponging cationic polymer polyethyleneimine (PEI), and Toll-like receptor 9 (TLR9) agonist cytosine phosphate guanine oligodeoxynucleotide (CpG-ODN). In in vitro studies, the TIENs was proved to (1) promote antigen capturing, (2) antigen-presenting cells (APCs) activation, and (3) antigen cross-presentation. In in vivo studies, intratumorally injected TIENs greatly enhanced antitumor effect and robust immune responses of oxaliplatin and doxorubicin in murine CT26 and 4T1 tumor models, respectively. Furthermore, after decoration with a detachable shielding, the TIENs was proved to be effective in promoting the antitumor effects of chemo agents after intravenous injection. The combination of TIENs with clinically widely used chemo agents should be meaningful in boosting effective antitumor immune responses and cancer therapy.
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.
Gattinoni, L.; Powell, D. J.; Rosenberg, S. A.; Restifo, N. P. Adoptive immunotherapy for cancer: Building on success. Nat. Rev. Immunol. 2006, 6, 383–393.
Finck, A.; Gill, S. I.; June, C. H. Cancer immunotherapy comes of age and looks for maturity. Nat. Commun. 2020, 11, 3325.
Wei, S. C.; Duffy, C. R.; Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086.
Leach, D. R.; Krummel, M. F.; Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736.
Hodi, F. S.; O'Day, S. J.; McDermott, D. F.; Weber, R. W.; Sosman, J. A.; Haanen, J. B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J. C. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723.
Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264.
Massarelli, E.; William, W.; Johnson, F.; Kies, M.; Ferrarotto, R.; Guo, M.; Feng, L.; Lee, J. J.; Tran, H.; Kim, Y. U. et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16–related cancer: A phase 2 clinical trial. JAMA Oncol. 2019, 5, 67–73.
Cheng, H. J.; Sun, G. D.; Chen, H.; Li, Y.; Han, Z. J.; Li, Y. B.; Zhang, P.; Yang, L. X.; Li, Y. M. Trends in the treatment of advanced hepatocellular carcinoma: Immune checkpoint blockade immunotherapy and related combination therapies. Am J Cancer Res 2019, 9, 1536–1545.
Brahmer, J.; Reckamp, K. L.; Baas, P.; Crinò, L.; Eberhardt, W. E. E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E. E.; Holgado, E. et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135.
Rizvi, N. A.; Hellmann, M. D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J. J.; Lee, W.; Yuan, J. D.; Wong, P.; Ho, T. S. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128.
Duan, Q. Q.; Zhang, H. L.; Zheng, J. N.; Zhang, L. J. Turning Cold into Hot: Firing up the tumor microenvironment. Trends Cancer 2020, 6, 605–618.
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218.
Sevenich, L. Turning "cold" into "hot" tumors-opportunities and challenges for radio-immunotherapy against primary and metastatic Brain cancers. Front. Oncol. 2019, 9, 163.
Ma, S.; Song, W. T.; Xu, Y. D.; Si, X. H.; Zhang, Y.; Tang, Z. H.; Chen, X. S. A ROS-responsive aspirin polymeric prodrug for modulation of tumor microenvironment and cancer immunotherapy. CCS Chem. 2020, 2, 390–400.
Si, X. H.; Ji, G. F.; Ma, S.; Xu, Y. D.; Zhao, J. Y.; Huang, Z. C.; Zhang, Y.; Song, W. T.; Tang, Z. H. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment. ACS Biomater. Sci. Eng. 2020, 6, 5281–5289.
Song, W. T.; Shen, L. M.; Wang, Y.; Liu, Q.; Goodwin, T. J.; Li, J. J.; Dorosheva, O.; Liu, T. Z.; Liu, R. H.; Huang, L. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 2018, 9, 2237.
Han, X.; Wang, R.; Xu, J.; Chen, Q.; Liang, C.; Chen, J. W.; Zhao, J. Y.; Chu, J. C.; Fan, Q.; Archibong, E. et al. In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Biomaterials 2019, 224, 119490.
Fournier, C.; Rivera Vargas, T.; Martin, T.; Melis, A.; Apetoh, L. Immunotherapeutic properties of chemotherapy. Curr. Opin. Pharmacol. 2017, 35, 83–88.
Cook, A. M.; Lesterhuis, W. J.; Nowak, A. K.; Lake, R. A. Chemotherapy and immunotherapy: Mapping the road ahead. Curr. Opin. Immunol. 2016, 39, 23–29.
Ghiringhelli, F.; Apetoh, L. Chemotherapy and immunomodulation: From immunogenic chemotherapies to novel therapeutic strategies. Future Oncol. 2013, 9, 469–472.
Pusuluri, A.; Wu, D.; Mitragotri, S. Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J. Control. Release 2019, 305, 130–154.
Misset, J. L.; Bleiberg, H.; Sutherland, W.; Bekradda, M.; Cvitkovic, E. Oxaliplatin clinical activity: A review. Crit. Rev. Oncol. Hematol. 2000, 35, 75–93.
Chen, D. S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10.
Elamanchili, P.; Diwan, M.; Cao, M.; Samuel, J. Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 2004, 22, 2406–2412.
Wang, X.; Uto, T.; Sato, K.; Ide, K.; Akagi, T.; Okamoto, M.; Kaneko, T.; Akashi, M.; Baba, M. Potent activation of antigen-specific T cells by antigen-loaded nanospheres. Immunol. Lett. 2005, 98, 123–130.
Saito, E.; Kuo, R.; Kramer, K. R.; Gohel, N.; Giles, D. A.; Moore, B. B.; Miller, S. D.; Shea, L. D. Design of biodegradable nanoparticles to modulate phenotypes of antigen-presenting cells for antigen-specific treatment of autoimmune disease. Biomaterials 2019, 222, 119432.
Hasegawa, H.; Matsumoto, T. Mechanisms of tolerance induction by dendritic cells in vivo. Front. Immunol. 2018, 9, 350.
Horton, C.; Shanmugarajah, K.; Fairchild, P. J. Harnessing the properties of dendritic cells in the pursuit of immunological tolerance. Biomed. J. 2017, 40, 80–93.
Randolph, G. J.; Angeli, V.; Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005, 5, 617–628.
Shao, J.; Tang, Z. H.; Sun, J. R.; Li, G.; Chen, X. S. Linear and four-armed poly(L-lactide)-block-poly(D-lactide) copolymers and their stereocomplexation with poly(lactide)s. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1560–1567.
Lutz, M. B.; Kukutsch, N.; Ogilvie, A. L. J.; Rößner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999, 223, 77–92.
Ma, S.; Song, W. T.; Xu, Y. D.; Si, X. H.; Lv, S. X.; Zhang, Y.; Tang, Z. H.; Chen, X. S. Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity. Nano Lett. 2020, 20, 2514–2521.
Xu, Y. D.; Ma, S.; Si, X. H.; Zhao, J. Y.; Yu, H. Y.; Ma, L. L.; Song, W. T.; Tang, Z. H. Polyethyleneimine-CpG nanocomplex as an in situ vaccine for boosting anticancer immunity in melanoma. Macromol. Biosci. 2021, 21, 2000207.
Cheng, T.; Miao, J. H.; Kai, D.; Zhang, H. J. Polyethylenimine-mediated CpG oligodeoxynucleotide delivery stimulates bifurcated cytokine induction. ACS Biomater. Sci. Eng. 2018, 4, 1013–1018.
Jiang, X.; Qu, W.; Pan, D.; Ren, Y.; Williford, J. M.; Cui, H. G.; Luijten, E.; Mao, H. Q. Plasmid-templated shape control of condensed DNA–block copolymer nanoparticles. Adv. Mater. 2013, 25, 227–232.
Duong, H. T. T.; Thambi, T.; Yin, Y.; Lee, J. E.; Seo, Y. K.; Jeong, J. H.; Lee, D. S. Smart pH-responsive nanocube-controlled delivery of DNA vaccine and chemotherapeutic drugs for chemoimmunotherapy. ACS Appl. Mater. Interfaces 2019, 11, 13058–13068.
Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663.
Cao, Y.; Huang, H. Y.; Chen, L. Q.; Du, H. H.; Cui, J. H.; Zhang, L. W.; Lee, B. J.; Cao, Q. R. Enhanced lysosomal escape of pH-responsive polyethylenimine–betaine functionalized carbon nanotube for the codelivery of survivin small interfering RNA and doxorubicin. ACS Appl. Mater. Interfaces 2019, 11, 9763–9776.
Min, Y. Z.; Roche, K. C.; Tian, S. M.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S. J.; Herring, L. E.; Zhang, L. Z.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882.
Patel, R. B.; Ye, M. Z.; Carlson, P. M.; Jaquish, A.; Zangl, L.; Ma, B.; Wang, Y. Y.; Arthur, I.; Xie, R. S.; Brown, R. J. et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater. 2019, 31, 1902626.
Chang, T. Z.; Stadmiller, S. S.; Staskevicius, E.; Champion, J. A. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomater. Sci. 2017, 5, 223–233.
Song, W. T.; Das, M.; Chen, X. S. Nanotherapeutics for immuno-oncology: A crossroad for new paradigms. Trends Cancer 2020, 6, 288–298.
Lin, M. L.; Zhan, Y. F.; Villadangos, J. A.; Lew, A. M. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol. Cell Biol. 2008, 86, 353–362.
Segura, E.; Albiston, A. L.; Wicks, I. P.; Chai, S. Y.; Villadangos, J. A. Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc. Natl. Acad. Sci. USA 2009, 106, 20377–20381.
Joffre, O. P.; Segura, E.; Savina, A.; Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 2012, 12, 557–569.
Warrier, V. U.; Makandar, A. I.; Garg, M.; Sethi, G.; Kant, R.; Pal, J. K.; Yuba, E.; Gupta, R. K. Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci. Rep. 2019, 39, BSR20193220.
Zhu, G. Z.; Lynn, G. M.; Jacobson, O.; Chen, K.; Liu, Y.; Zhang, H. M.; Ma, Y.; Zhang, F. W.; Tian, R.; Ni, Q. Q. et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat. Commun. 2017, 8, 1954.
Zhao, Y. R.; Lee, R. J.; Liu, L. T.; Dong, S. Y.; Zhang, J.; Zhang, Y. C.; Yao, Y. C.; Lu, J. H.; Meng, Q. F.; Xie, J. et al. Multifunctional drug carrier based on PEI derivatives loaded with small interfering RNA for therapy of liver cancer. Int. J. Pharm. 2019, 564, 214–224.
Xu, J.; Wang, H.; Xu, L. G.; Chao, Y.; Wang, C. Y.; Han, X.; Dong, Z. L.; Chang, H.; Peng, R.; Cheng, Y. Y. et al. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials 2019, 207, 1–9.
Guermonprez, P.; Saveanu, L.; Kleijmeer, M.; Davoust, J.; van Endert, P.; Amigorena, S. ER–phagosome fusion defines an MHC class Ⅰ cross-presentation compartment in dendritic cells. Nature 2003, 425, 397–402.
Sakuishi, K.; Apetoh, L.; Sullivan, J. M.; Blazar, B. R.; Kuchroo, V. K.; Anderson, A. C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 2010, 207, 2187–2194.
Kuai, R.; Yuan, W. M.; Son, S.; Nam, J.; Xu, Y.; Fan, Y. C.; Schwendeman, A.; Moon, J. J. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 2018, 4, eaao1736.
Gao, F.; Zhang, C.; Qiu, W. X.; Dong, X.; Zheng, D. W.; Wu, W.; Zhang, X. Z. PD-1 blockade for improving the antitumor efficiency of polymer–doxorubicin nanoprodrug. Small 2018, 14, 1802403.
Guan, X. W.; Guo, Z. P.; Lin, L.; Chen, J.; Tian, H. Y.; Chen, X. S. Ultrasensitive pH triggered charge/size dual-rebound gene delivery system. Nano Lett. 2016, 16, 6823–6831.
Zhao, H. R.; Heindel, N. D. Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm. Res. 1991, 8, 400–402.
Zou, W.; Wolchok, J. D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Trans. Med. 2016, 8, 328rv4.