AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemically stable lithium-ion and electron insulators (LEIs) for solid-state batteries

Kai Pei1,2So Yeon Kim2Ju Li2( )
Frontier Institute of Science and Technology Xi'an Jiaotong UniversityXi'an 710049 China
Department of Materials Science and Engineering and Department of Nuclear Science and Engineering Massachusetts Institute of TechnologyCambridgeMA 02139 USA
Show Author Information

Graphical Abstract

Abstract

Rechargeable solid-state Li metal batteries demand ordered flows of Li-ions and electrons in and out of solid structures, with repeated waxing and waning of LiBCC phase near contact interfaces which gives rise to various electro-chemo-mechanical challenges. There have been approaches that adopt three-dimensional (3D) nanoporous architectures consisting of mixed ion-electron conductors (MIECs) to combat these challenges. However, there has remained an issue of LiBCC nucleation at the interfaces between different solid components (e.g., solid electrolyte/MIEC interface), which could undermine the interfacial bonding, thereby leading to the evolution of mechanical instability and the loss of ionic/electronic percolation. In this regard, the present work shows that the Li-ion and electron insulators (LEIs) that are thermodynamically stable against LiBCC could combat such challenges by blocking transportation of charge carriers on the interfaces, analogous to dielectric layers in transistors. We searched the ab initio database and have identified 48 crystalline compounds to be LEI candidates (46 experimentally reported compounds and 2 hypothetical compounds predicted to be stable) with a band gap greater than 3 eV and vanishing Li solubility. Among these compounds, those with good adhesion to solid electrolyte and mixed ion-electron conductor of interest, but are lithiophobic, are expected to be the most useful. We also extended the search to Na or K metal compatible alkali-ion and electron insulators, and identified some crystalline compounds with a property to resist corresponding alkali-ions and electrons.

Electronic Supplementary Material

Download File(s)
12274_2021_3627_MOESM1_ESM.pdf (1 MB)

References

1

Zhu, Z.; Yu, D. W.; Yang, Y.; Su, C.; Huang, Y. M.; Dong, Y. H.; Waluyo, I.; Wang, B. M.; Hunt, A.; Yao, X. Y. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nature Energy 2019, 4, 1049–1058.

2

Qiao, Y.; Jiang, K. Z.; Deng, H.; Zhou, H. S. A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nature Catal. 2019, 2, 1035–1044.

3

Chen, Y. M.; Wang, Z. Q.; Li, X. Y.; Yao, X. H.; Wang, C.; Li, Y. T.; Xue, W. J.; Yu, D. W; Kim, S. Y.; Yang, F. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 2020, 578, 251–255.

4

Fincher, C. D.; Ojeda, D.; Zhang, Y. W.; Pharr, G. M.; Pharr, M. Mechanical properties of metallic lithium: From Nano to bulk scales. Acta Mater. 2020, 186, 215–222.

5

Jain, A.; Hautier, G.; Moore, C. J.; Ong, S. P.; Fischer, C. C.; Mueller, T.; Persson, K. A.; Ceder, G. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 2011, 50, 2295–2310.

6

Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002.

7

Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 2016, 28, 266–273.

8

Suo, L. M.; Xue, W. J.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y. M.; Yang, W. L.; Li, Y. X.; Li, J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 2018, 115, 1156–1161.

9

Liu, X. H.; Liu, Y.; Kushima, A.; Zhang, S. L.; Zhu, T.; Li, J.; Huang, J. Y. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2012, 2, 722–741.

10

Duan, J.; Zheng, Y. H.; Luo, W.; Wu, W. Y.; Wang, T. R.; Xie, Y.; Li, S.; Li, J.; Huang, Y. H. Is graphite lithiophobic or lithiophilic? Natl. Sci. Rev. 2020, 7, 1208–1217.

11

Chan, M. K. Y.; Ceder, G. Efficient band gap prediction for solids. Phys. Rev. Lett. 2010, 105, 196403.

12

Bergerhoff, G.; Hundt, R.; Sievers, R.; Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 1983, 23, 66–69.

13

Ong, S. P.; Cholia, S.; Jain, A.; Brafman, M.; Gunter, D.; Ceder, G.; Persson, K. A. The materials application programming interface (API): A simple, flexible and efficient API for materials data based on REpresentational state transfer (REST) principles. Comput. Mater. Sci. 2015, 97, 209–215.

14

Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319.

15
Pei, K. (2021, February 18). peikai/IEIs: Release 1.0 [online]. Zenodo. http://doi.org/10.5281/zenodo.4548878 (accessed 24 May, 2021).
16

Ong, S. P.; Wang, L.; Kang, B.; Ceder, G. Li−Fe−P−O2 phase diagram from first principles calculations. Chem. Mater. 2008, 20, 1798–1807.

17

Ong, S. P.; Jain, A.; Hautier, G.; Kang, B.; Ceder, G. Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations. Electrochem. Commun. 2010, 12, 427–430.

18

Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 1996, 22, 469–483.

19

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272.

20

Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.; Persson, K. A.; Ceder, G. Formation enthalpies by mixing GGA and GGA+U calculations. Phys. Rev. B 2011, 84, 045115.

21
Madelung, O. Semiconductors: Data Handbook; 3rd ed. Springer: Berlin, 2004. pp. 691.https://doi.org/10.1007/978-3-642-18865-7
22

Xue, W. J.; Miao, L. X.; Qie, L.; Wang, C.; Li, S.; Wang, J. L.; Li, J. Gravimetric and volumetric energy densities of lithium-sulfur batteries. Curr. Opin. Electrochem. 2017, 6, 92–99.

23

Feng, J.; Zhang, W.; Jiang, W. Ab initio study of Ag/Al2O3 and Au/Al2O3 interfaces. Phys. Rev. B 2005, 72, 115411–115423.

24

Li, H. T.; Chen, L. F.; Yuan, X.; Zhang, W. Q.; Smith, J. R.; Evans, A. G. Interfacial stoichiometry and adhesion at metal/α-Al2O3 interfaces. J. Am. Ceram. Soc. 2011, 94, s154–s159.

25

Zhang, W.; Smith, J. R. Nonstoichiometric interfaces and Al2O3 adhesion with Al and Ag. Phys. Rev. Lett. 2000, 85, 3225–3228.

26

Batyrev, I. G.; Alavi, A.; Finnis, M. W. Equilibrium and adhesion of Nb/sapphire: The effect of oxygen partial pressure. Phys. Rev. B 2000, 62, 4698–4706.

27

Guo, H. B.; Qi, Y.; Li, X. D. Adhesion at diamond/metal interfaces: A density functional theory study. J. Appl. Phys. 2010, 107, 033722.

28

Chatain, D.; Coudurier, L.; Eustathopoulos, N. Wetting and interfacial bonding in ionocovalent oxide-liquid metal systems. Rev. Phys. Appl. 1988, 23, 1055–1064.

29

Merlin, V.; Eustathopoulos, N. Wetting and adhesion of Ni-Al alloys on α-Al2O3 single crystals. J. Mater. Sci. 1995, 30, 3619–3624.

30

Constant, L.; Speisser, C.; Le Normand, F. HFCVD diamond growth on Cu(111). Evidence for carbon phase transformations by in situ AES and XPS. Surf. Sci. 1997, 387, 28–43.

31

Bruley, J.; Brydson, R.; Müllejans, H.; Mayer, J.; Gutekunst, G.; Mader, W.; Knauss, D.; Rühle, M. Investigations of the chemistry and bonding at niobiumsapphire interfaces. J. Mater. Res. 1994, 9, 2574–2583.

32

Shen, A. Q.; Liu, Y. K.; Ali, S. M. F. A model of spontaneous flow driven by capillary pressure in nanoporous media. Capillarity 2020, 3, 1–7.

33

Sun, J.; He, L. B.; Lo, Y. C.; Xu, T.; Bi, H. C.; Sun, L. T.; Zhang, Z.; Mao, S. X.; Li, J. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 2014, 13, 1007–1012.

34

Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

Nano Research
Pages 1213-1220
Cite this article:
Pei K, Kim SY, Li J. Electrochemically stable lithium-ion and electron insulators (LEIs) for solid-state batteries. Nano Research, 2022, 15(2): 1213-1220. https://doi.org/10.1007/s12274-021-3627-1
Topics:

726

Views

5

Crossref

5

Web of Science

5

Scopus

1

CSCD

Altmetrics

Received: 25 February 2021
Revised: 07 May 2021
Accepted: 27 May 2021
Published: 17 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return