AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strain-sensitive ferromagnetic two-dimensional Cr2Te3

Junchuan Zhong1,§Mingshan Wang2,§Teng Liu1Yinghe Zhao1Xiang Xu1Shasha Zhou1Junbo Han2( )Lin Gan1( )Tianyou Zhai1( )
State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and Engineering Huazhong University of Science and TechnologyWuhan 430074 China
Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China Huazhong University of Science and TechnologyWuhan 430074 China

§ Junchuan Zhong and Mingshan Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Searching for room temperature magnetic two-dimensional (2D) materials is a charming goal, but the number of satisfied materials is tiny. Strain can introduce considerable deformation into the lattice structure of 2D materials, and thus significantly modulate their intrinsic properties. In this work, we demonstrated a remarkable strain-modulated magnetic properties in the chemical vapor deposited Cr2Te3 nanoflakes grown on mica substrate. We found the Curie temperature of Cr2Te3 nanoflakes can be positively and negatively modulated under tensile and compressive strain respectively, with a maximum varied value of ~ 40 and −90 K, dependent on the thickness of samples. Besides, the coercive field of Cr2Te3 nanoflakes also showed a significant decrease under the applied strain, suggesting the decrease of exchange interaction or the change of the magnetization direction. This work suggests a promise to employ interfacial strain to accelerate the practical application of room temperature 2D magnetics.

Electronic Supplementary Material

Download File(s)
12274_2021_3633_MOESM1_ESM.pdf (2.4 MB)

References

1

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

2

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

3

Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

4

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

5

Wang, R. Y.; Zhou, F. Y.; Lv, L.; Zhou, S. S.; Yu, Y. W.; Zhuge, F.; Li, H. Q.; Gan, L.; Zhai, T Y. Modulation of the anisotropic electronic properties in ReS2 via ferroelectric film. CCS Chem. 2019, 1, 268–277.

6

Guan, Z. Y.; Ni, S. Strain-controllable high curie temperature, large valley polarization, and magnetic crystal anisotropy in a 2D ferromagnetic janus VSeTe monolayer. ACS Appl. Mater. Interfaces 2020, 12, 53067–53075.

7

Kimel, A. V.; Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 2019, 4, 189–200.

8

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: a spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

9

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

10

Deka, A.; Rana, B.; Anami, R.; Miura, K.; Takahashi, H.; Otani, Y.; Fukuma, Y. Electric-field control of interfacial in-plane magnetic anisotropy in CoFeB/MgO junctions. Phys. Rev. B 2020, 101, 174405.

11

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

12

Zhang, L. M.; Huang, X. Y.; Dai, H. W.; Wang, M. S.; Cheng, H.; Tong, L.; Li, Z.; Han, X. T.; Wang, X.; Ye, L. et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der waals heterostructures. Adv. Mater. 2020, 32, 2002032.

13

Lotgering, F. K.; Gorter, E. W. Solid solutions between ferromagnetic and antiferromagnetic compounds with NiAs structure. J. Phys. Chem. Solids 1957, 3, 238–249.

14

Kim, W. J.; Oh, T.; Song, J.; Ko, E. K.; Li, Y. Y.; Mun, J.; Kim, B.; Son, J.; Yang, Z.; Kohama, Y. et al. Strain engineering of the magnetic multipole moments and anomalous Hall effect in pyrochlore iridate thin films. Sin. Adv. 2020, 6, eabb1539.

15

Zhou, S. S.; Wang, R. Y.; Han, J. B.; Wang, D. L.; Li, H. Q.; Gan, L.; Zhai, T Y. . Ultrathin Non-van der Waals magnetic Rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and raman scattering investigation. Adv. Funct. Mater. 2019, 29, 1805880.

16

Dai, Z. H.; Liu, L. Q.; Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 2019, 31, 1805417.

17

Peng, Z. W.; Chen, X. L.; Fan, Y. L.; Srolovitz, D. J.; Lei, D. Y. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Sci. Appl. 2020, 9, 190.

18

Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

19

Wang, Y.; Wang, C.; Liang, S. J.; Ma, Z. C.; Xu, K.; Liu, X. W.; Zhang, L. L.; Admasu, A. S.; Cheong, S. W.; Wang, L. Z. et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533.

20

Liu, L. X.; Zhai, T. Y. Wafer-scale vertical van der Waals heterostructures. InfoMat 2020, 3, 3–21.

21

Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.

22

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

23

Iqbal, M. W.; Shahzad, K.; Akbar, R.; Hussain, G. A review on Raman finger prints of doping and strain effect in TMDCs. Microelectron. Eng. 2020, 219, 111152.

24

Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

25

Wang, M. S.; Kang, L. X.; Su, J. W.; Zhang, L. M.; Dai, H. W.; Cheng, H.; Han, X. T.; Zhai, T. Y.; Liu, Z.; Han, J. B. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale 2020, 12, 16427–16432.

26

Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.

27

Sheng, P.; Wang, B. M.; Li, R. W. Flexible magnetic thin films and devices. J. Semicond. 2018, 39, 011006.

28

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

29

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

30

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

31

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192

32

Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

33

Pierce, M. S.; Buechler, C. R.; Sorensen, L. B.; Turner, J. J.; Kevan, S. D.; Jagla, E. A.; Deutsch, J. M.; Mai, T.; Narayan, O.; Davies, J. E. et al. Disorder-induced microscopic magnetic memory. Phys. Rev. Lett. 2005, 94, 017202.

34

Jagla, E. A. Hysteresis loops of magnetic thin films with perpendicular anisotropy. Phys. Rev. B 2005, 72, 094406.

35
Wang, G. The application of magnetoelasticity in stress monitoring. Ph. D. Dissertation, University of Illinois at Chicago, Illinois, 2006.
Nano Research
Pages 1254-1259
Cite this article:
Zhong J, Wang M, Liu T, et al. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Research, 2022, 15(2): 1254-1259. https://doi.org/10.1007/s12274-021-3633-3
Topics:

1175

Views

37

Crossref

37

Web of Science

34

Scopus

0

CSCD

Altmetrics

Received: 27 April 2021
Revised: 30 May 2021
Accepted: 30 May 2021
Published: 23 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return