Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Searching for room temperature magnetic two-dimensional (2D) materials is a charming goal, but the number of satisfied materials is tiny. Strain can introduce considerable deformation into the lattice structure of 2D materials, and thus significantly modulate their intrinsic properties. In this work, we demonstrated a remarkable strain-modulated magnetic properties in the chemical vapor deposited Cr2Te3 nanoflakes grown on mica substrate. We found the Curie temperature of Cr2Te3 nanoflakes can be positively and negatively modulated under tensile and compressive strain respectively, with a maximum varied value of ~ 40 and −90 K, dependent on the thickness of samples. Besides, the coercive field of Cr2Te3 nanoflakes also showed a significant decrease under the applied strain, suggesting the decrease of exchange interaction or the change of the magnetization direction. This work suggests a promise to employ interfacial strain to accelerate the practical application of room temperature 2D magnetics.
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.
Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.
Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.
Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.
Wang, R. Y.; Zhou, F. Y.; Lv, L.; Zhou, S. S.; Yu, Y. W.; Zhuge, F.; Li, H. Q.; Gan, L.; Zhai, T Y. Modulation of the anisotropic electronic properties in ReS2 via ferroelectric film. CCS Chem. 2019, 1, 268–277.
Guan, Z. Y.; Ni, S. Strain-controllable high curie temperature, large valley polarization, and magnetic crystal anisotropy in a 2D ferromagnetic janus VSeTe monolayer. ACS Appl. Mater. Interfaces 2020, 12, 53067–53075.
Kimel, A. V.; Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 2019, 4, 189–200.
Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: a spin-based electronics vision for the future. Science 2001, 294, 1488–1495.
Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.
Deka, A.; Rana, B.; Anami, R.; Miura, K.; Takahashi, H.; Otani, Y.; Fukuma, Y. Electric-field control of interfacial in-plane magnetic anisotropy in CoFeB/MgO junctions. Phys. Rev. B 2020, 101, 174405.
Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.
Zhang, L. M.; Huang, X. Y.; Dai, H. W.; Wang, M. S.; Cheng, H.; Tong, L.; Li, Z.; Han, X. T.; Wang, X.; Ye, L. et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der waals heterostructures. Adv. Mater. 2020, 32, 2002032.
Lotgering, F. K.; Gorter, E. W. Solid solutions between ferromagnetic and antiferromagnetic compounds with NiAs structure. J. Phys. Chem. Solids 1957, 3, 238–249.
Kim, W. J.; Oh, T.; Song, J.; Ko, E. K.; Li, Y. Y.; Mun, J.; Kim, B.; Son, J.; Yang, Z.; Kohama, Y. et al. Strain engineering of the magnetic multipole moments and anomalous Hall effect in pyrochlore iridate thin films. Sin. Adv. 2020, 6, eabb1539.
Zhou, S. S.; Wang, R. Y.; Han, J. B.; Wang, D. L.; Li, H. Q.; Gan, L.; Zhai, T Y. . Ultrathin Non-van der Waals magnetic Rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and raman scattering investigation. Adv. Funct. Mater. 2019, 29, 1805880.
Dai, Z. H.; Liu, L. Q.; Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 2019, 31, 1805417.
Peng, Z. W.; Chen, X. L.; Fan, Y. L.; Srolovitz, D. J.; Lei, D. Y. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Sci. Appl. 2020, 9, 190.
Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.
Wang, Y.; Wang, C.; Liang, S. J.; Ma, Z. C.; Xu, K.; Liu, X. W.; Zhang, L. L.; Admasu, A. S.; Cheong, S. W.; Wang, L. Z. et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533.
Liu, L. X.; Zhai, T. Y. Wafer-scale vertical van der Waals heterostructures. InfoMat 2020, 3, 3–21.
Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.
Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.
Iqbal, M. W.; Shahzad, K.; Akbar, R.; Hussain, G. A review on Raman finger prints of doping and strain effect in TMDCs. Microelectron. Eng. 2020, 219, 111152.
Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.
Wang, M. S.; Kang, L. X.; Su, J. W.; Zhang, L. M.; Dai, H. W.; Cheng, H.; Han, X. T.; Zhai, T. Y.; Liu, Z.; Han, J. B. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale 2020, 12, 16427–16432.
Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.
Sheng, P.; Wang, B. M.; Li, R. W. Flexible magnetic thin films and devices. J. Semicond. 2018, 39, 011006.
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192
Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.
Pierce, M. S.; Buechler, C. R.; Sorensen, L. B.; Turner, J. J.; Kevan, S. D.; Jagla, E. A.; Deutsch, J. M.; Mai, T.; Narayan, O.; Davies, J. E. et al. Disorder-induced microscopic magnetic memory. Phys. Rev. Lett. 2005, 94, 017202.
Jagla, E. A. Hysteresis loops of magnetic thin films with perpendicular anisotropy. Phys. Rev. B 2005, 72, 094406.