Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Low-dimensional inorganic nanostructures such as quantum dots as well as one- and two-dimensional nanostructures are widely studied and already used in high-performance infrared photodetectors. These structures feature large surface-to-volume ratios, tunable light absorption, and electron-limiting effects. This article reviews the state-of-the-art research of low-dimensional inorganic nanostructures and their application for infrared photodetection. Thanks to nano-structuring, a narrow bandgap, hybrid systems, surface-plasmon resonance, and doping, many common semiconductors have the potential to be used for infrared detection. The basic approaches towards infrared detection are summarized. Furthermore, a selection of very important and special nanostructured materials and their remarkable infrared-detection properties are introduced (e.g., black phosphorus, graphene-based, MoX2-based, Ⅲ-Ⅶ group). Each section in this review describes the corresponding photosensitive properties in detail. The article concludes with an outlook of anticipated future developments in the field.
Qiao, S.; Liu, J. H.; Niu, X. N.; Liang, B. L.; Fu, G. S.; Li, Z. Q.; Wang, S. F.; Ren, K. L.; Pan, C. F. Piezophototronic effect enhanced photoresponse of the flexible Cu(In, Ga)Se2(CIGS) heterojunction photodetectors. Adv. Funct. Mater. 2018, 28, 1707311.
Xu, K. M.; Zhou, W. J.; Ning, Z. J. Integrated structure and device engineering for high performance and scalable quantum dot Infrared photodetectors. Small 2020, 16, 2003397.
Guan, X. W.; Yu, X. C.; Periyanagounder, D.; Benzigar, M. R.; Huang, J. K.; Lin, C. H.; Kim, J.; Singh, S.; Hu, L.; Liu, G. Z. et al. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 2021, 9, 2001708.
Yang, M.; Han, Q.; Liu, X. C.; Han, J. Y.; Zhao, Y. F.; He, L.; Gou, J.; Wu, Z. M.; Wang, X. R.; Wang, J. Ultrahigh stability 3D Ti Bi2Se3/ MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 2020, 30, 1909659.
Tadeo, I. J.; Mukhokosi, E. P.; Krupanidhi, S. B.; Umarji, A. M. Low-cost VO2 (M1) thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture for IR photodetection. RSC Adv. 2019, 9, 9983–9992.
Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high- detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.
Ismailov, N. J. Performance improving of small-dimension IR photodetectors. Tech. Phys. Lett. 2011, 37, 458–460.
Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L. L.; Li, T. X.; Martyniuk, P.; Rogalski, A.; Hu, W. D. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396.
Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano, 2008, 2, 833–840.
Kinch, M. A. HgCdTe: Recent trends in the ultimate IR semiconductor. J. Electron. Mater. 2010, 39, 1043–1052.
Guo, Y. B.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. J. Mater. Chem. C, 2017, 5, 1436–1442.
Martinez, B.; Ramade, J.; Livache, C.; Goubet, N.; Chu, A.; Gréboval, C.; Qu, J. L.; Watkins, W. L.; Becerra, L.; Dandeu, E. et al. HgTe nanocrystal inks for extended short‐wave infrared detection. Adv. Opt. Mater. 2019, 7, 1900348.
Jeong, M. K.; Kang, J.; Park, D.; Yim, S.; Jung, I. H. A conjugated polyelectrolyte interfacial modifier for high performance near-infrared quantum-dot photodetectors. J. Mater. Chem. C 2020, 8, 2542–2550.
Mukherjee, S.; Jana, S.; Sinha, T. K.; Das, S.; Ray, S. K. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids. Nanoscale Adv. 2019, 1, 3279–3287.
Hu, Z. H.; Li, Q.; Lei, B.; Wu, J.; Zhou, Q. H.; Gu, C. D.; Wen, X. L.; Wang, J. Y.; Liu, Y. P.; Li, S. S. et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.
Wang, F. K.; Zhang, Y.; Gao Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.
Jo, S. H.; Park, H. Y.; Kang, D. H.; Shim, J.; Jeon, J.; Choi, S.; Kim, M.; Park, Y.; Lee, J.; Song, Y. J. et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl)triethoxysilane and triphenylphosphine treatment. Adv. Mater. 2016, 28, 6711–6718.
Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.
Xie, Y.; Liang, F.; Wang, D.; Chi, S. M.; Yu, H. H.; Lin, Z. S.; Zhang, H. J.; Chen, Y. X.; Wang, J. Y.; Wu Y. C. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858.
Zhang, S. K.; Jiao, H. X.; Wang, X. D.; Chen, Y.; Wang, H. L.; Zhu, L. Q.; Jiang, W.; Liu, J. J.; Sun, L. X.; Lin, T. et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv. Funct. Mater. 2020, 30, 2006156.
Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.
Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.
Nandi, S.; Tripathi, R.; Adhikary, G. D.; Kumar, P.; Misra, A. Ultrahigh infrared photoresponse in titanium sesquioxide at mott- insulator transition. Adv. Mater. Interfaces 2020, 7, 2001091.
Xie, L.; Wang, J.; Li, J.; Li, C.; Zhang, Y.; Zhu, B. P.; Guo, Y. Z.; Wang, Z. C.; Zhang, K. An atomically thin air-stable narrow-gap semiconductor Cr2S3 for broadband photodetection with high responsivity. Adv. Electron. Mater. 2020, 6, 2000962.
Jang, H.; Seok, Y.; Choi, Y.; Cho, S. H.; Watanabe, K.; Taniguchi, T.; Lee, K. High-performance near-infrared photodetectors based on surface-doped InSe. Adv. Funct. Mater. 2021, 31, 2006788.
Rajeswaran, B.; Tadeo, I. J.; Umarji, A. M. IR photoresponsive VO2 thin films and electrically assisted transition prepared by single-step chemical vapor deposition. J. Mater. Chem. C 2020, 8, 12543–12550.
Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.
Jana, M. K.; Chithaiah, P.; Murali, B.; Krupanidhi, S. B.; Biswas, K.; Rao, C. N. R. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface. J. Mater. Chem. C 2013, 1, 6184–6187.
Zhao, X. X.; Yin, Q.; Huang, H.; Yu, Q.; Liu, B.; Yang, J.; Dong, Z.; Shen, Z. J.; Zhu, B. P.; Liao, L. et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res. 2021, 14, 1955–1960.
Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.
Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493.
Kim, D.; Kim, D. H.; Lee, J. H.; Grossman, J. C. Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 2013, 110, 196802.
Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.
Jo, S. H.; Lee, H. W.; Shim, J.; Heo, K.; Kim, M.; Song, Y. J.; Park, J. H. Highly efficient infrared photodetection in a gate-controllable van der Waals heterojunction with staggered bandgap alignment. Adv. Sci. 2018, 5, 1700423.
Ran, W. H.; Wang, L. L.; Zhao, S. F.; Wang, D. P.; Yin, R. Y.; Lou, Z.; Shen, G. Z. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 2020, 32, 1908419.
Chen, Y. F.; Ma, W. L.; Tan, C. W.; Luo, M.; Zhou, W.; Yao, N. J.; Wang, H.; Zhang, L. L.; Xu, T. F.; Tong, T. et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 2021, 31, 2009554.
Lei, S. D.; Sobhani, A.; Wen, F. F.; George, A.; Wang, Q. Z.; Huang, Y. H.; Dong, P.; Li, B.; Najmaei, S.; Bellah, J. et al. Ternary CuIn7Se11: Towards ultra-thin layered photodetectors and photovoltaic devices. Adv. Mater. 2014, 26, 7666–7672.
Dong, Y. F.; Chen, M. Y.; Yiu, W. K.; Zhu, Q.; Zhou, G. D.; Kershaw, S. V.; Ke, N.; Wong, C. P.; Rogach, A. L.; Zhao, N. Solution processed hybrid polymer: HgTe quantum dot phototransistor with high sensitivity and fast infrared response up to 2400 nm at room temperature. Adv. Sci. 2020, 7, 2000068.
Mochalov, L.; Logunov, A.; Prokhorov, I.; Sazanova, T.; Kudrin, A.; Yunin, P.; Zelentsov, S.; Letnianchik, A.; Starostin, N.; Boreman, G. et al. Plasma-chemical synthesis of lead sulphide thin films for near-IR photodetectors. Plasma Chem. Plasma Process. 2021, 41, 493–506.
Lan, X. Z.; Voznyy, O.; Kiani, A.; de Arquer, F. P. G.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.
Zhang, Z. L.; Chen, Z. H.; Yuan, L.; Chen, W. J.; Yang, J. F.; Wang, B.; Wen, X. M.; Zhang, J. B.; Hu, L.; Stride, J. A. et al. A new passivation route leading to over 8% efficient PbSe quantum-dot solar cells via direct ion exchange with perovskite nanocrystals. Adv. Mater. 2017, 29, 1703214.
Szendrei, K.; Cordella, F.; Kovalenko, M. V.; Böberl, M.; Hesser, G.; Yarema, M.; Jarzab, D.; Mikhnenko, O. V.; Gocalinska, A.; Saba, M. et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 2009, 21, 683–687.
Jagtap, A.; Goubet, N.; Livache, C.; Chu, A.; Martinez, B.; Gréboval, C.; Qu, J. L.; Dandeu, E.; Becerra, L.; Witkowski, N. et al. Short wave infrared devices based on HgTe nanocrystals with air stable performances. J. Phys. Chem. C. 2018, 122, 14979–14985.
Chen, M. L.; Lan, X. Z.; Tang, X.; Wang, Y. Y.; Hudson, M. H.; Talapin, D. V.; Guyot-Sionnest, P. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photonics 2019, 6, 2358–2365.
Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H. Quintero-Bermudez, R. et al. Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 2017, 29, 1703627.
Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene- quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.
Yang, C.; Feng, S. L.; Tang, L. L.; Shen, J.; Wei, X. Z.; Shi, H. F. Electrochemical epitaxial grown PbS nanorods array on graphene film for high-performance photodetector. Adv. Mater. Interfaces 2020, 8, 2001464.
Georgitzikis, E.; Malinowski, P. E.; Maes, J.; Hadipour, A.; Hens, Z.; Heremans, P.; Cheyns, D. Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering. Adv. Funct. Mater. 2018, 28, 1804502.
Schornbaum, J.; Winter, B.; Schießl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798–5806.
Sliz, R.; Lejay, M.; Fan, J. Z.; Choi, M. J.; Kinge, S.; Hoogland, S.; Fabritius, T.; de Arquer, F. P. G.; Sargent, E. H. Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 2019, 13, 11988–11995.
Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics, 2016, 10, 81–92.
Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953–2103960.
Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.
Gomathi, P. T.; Sahatiya, P.; Badhulika, S. Large-area, flexible broadband photodetector based on ZnS-MoS2 hybrid on paper substrate. Adv. Funct. Mater. 2017, 27, 1701611.
Thurakkal, S.; Feldstein, D.; Perea-Causín, R.; Malic, E.; Zhang, X. Y. The art of constructing black phosphorus nanosheet based heterostructures: from 2D to 3D. Adv. Mater. 2021, 33, 2005254.
Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.
Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.
Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate- incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.
Ding, Y.; Zhou, N.; Gan, L.; Yan, X. X.; Wu, R. Z.; Abidi, I. H.; Waleed, A.; Pan, J.; Ou, X. W.; Zhang, Q. C. et al. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–Vis–IR photodetectors. Nano Energy 2018, 49, 200–208.
Castilla, S.; Vangelidis, I.; Pusapati, V. V.; Goldstein, J.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 2020, 11, 4872.
Zhang, J.; Hong, H.; Lian, C.; Ma, W.; Xu, X. Z.; Zhou, X.; Fu, H. X.; Liu, K. H.; Meng, S. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv. Sci. 2017, 4, 1700086.
Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.
Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.
Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3p-n heterojunctions. ACS Nano 2019, 13, 13573–13580.
Xue, H.; Wang, Y. D.; Dai, Y. Y.; Kim, W.; Jussila, H.; Qi, M.; Susoma, J.; Ren, Z. Y.; Dai, Q.; Zhao, J. L. et al. A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths. Adv. Funct. Mater. 2018, 28, 1804388.
Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.
Wu, F.; Xia, H.; Sun, H. D.; Zhang, J. W.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M. S.; Wu, X. et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.
Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268-1700275.
Manga, K. K.; Wang, J. Z.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids. Adv. Mater. 2012, 24, 1697–1702.
Lähnemann, J.; Ajay, A.; Den Hertog, M. I.; Monroy, E. Near- infrared intersubband photodetection in GaN/AlN nanowires. Nano Lett. 2017, 17, 6954–6960.
Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.
Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface Plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.
Chang, K. E.; Kim, C.; Yoo, T. J.; Kwon, M. G.; Heo, S.; Kim, S. Y.; Hyun, Y.; Yoo, J. I.; Ko, H. C.; Lee, B. H. High-responsivity near- infrared photodetector using gate-modulated graphene/germanium schottky junction. Adv. Electro. Mater. 2019, 5, 1800957.
Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/ Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.
Dai, Y. J.; Wang, X. F.; Peng, W. B.; Xu, C.; Wu, C. S.; Dong, K.; Liu, R. Y.; Wang, Z. L. Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro- phototronic effect: An approach for photosensing below bandgap energy. Adv. Mater. 2018, 30, 1705893.
Prakash, N.; Kumar, G.; Singh, M.; Barvat, A.; Pal, P.; Singh, S. P.; Singh, H. K.; Khanna, S. P. Binary multifunctional ultrabroadband self-powered g-C3N4/Si heterojunction high-performance photodetector. Adv. Opt. Mater. 2018, 6, 1800191.
Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.
Chang, Y. R.; Ho, P. H.; Wen, C. Y.; Chen, T. P.; Li, S. S.; Wang, J. Y.; Li, M. K.; Tsai, C. A.; Sankar, R.; Wang, W. H. et al. Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector. ACS Photonics 2017, 4, 2930–2936.
Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ASC Nano 2015, 9, 1886–1894.
Yang, M.; Wang, J.; Zhao, Y. F.; He, L.; Ji, C. H.; Liu, X. C.; Zhou, H. X.; Wu, Z. M.; Wang, X. R.; Jiang, Y. D. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers. ACS Nano 2019, 13, 755–763.
Sun, J. M.; Peng, M.; Zhang, Y. S.; Zhang, L.; Peng, R.; Miao, C. C.; Liu, D.; Han, M. M.; Feng, R. F.; Ma, Y. D. et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett. 2019, 19, 5920–5929.
Umezu, I.; Warrender, J. M.; Charnvanichborikarn, S.; Kohno, A.; Williams, J. S.; Tabbal, M.; Papazoglou, D. G.; Zhang, X. C.; Aziz, M. J. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. J. Appl. Phys. 2013, 113, 213501-213507.
Lourenço, M. A.; Hughes, M. A.; Lai, K. T.; Sofi, I. M.; Ludurczak, W.; Wong, L.; Gwilliam, R. M.; Homewood, K. P. Silicon-modified rare-earth transitions-a new route to near- and mid-IR photonics. Adv. Funct. Mater. 2016, 26, 1986–1994.
Xu, X. B.; Chueh, C. C.; Jing, P. F.; Yang, Z. B.; Shi, X. L.; Zhao, T.; Lin, L. Y.; Jen, A. K. Y. High-performance near-IR photodetector using low-bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 2017, 27, 1701053.
Abbasi, M.; Evans, C. I.; Chen, L. Y.; Natelson, D. Single metal photodetectors using plasmonically-active asymmetric gold nanostructures. ACS Nano 2020, 14, 17535–17542.
Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.
Dubey, A.; Mishra, R.; Hsieh, Y. H.; Cheng, C. W.; Wu, B. H.; Chen, L. J.; Gwo, S.; Yen, T. J. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. 2020, 7, 2002274.
Fang, Z. Y.; Liu, Z.; Wang, Y. M.; Ajayan, P. M.; Nordlander, P.; Halas, N. J. Graphene-antenna sandwich photodetector. Nano Lett. 2012, 12, 3808–3813.
Yao, Y.; Shankar, R.; Rauter, P.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 2014, 14, 3749–3754.
Nordin, L.; Kamboj, A.; Petluru, P.; Shaner, E.; Wasserman, D. All-epitaxial integration of long-wavelength infrared plasmonic materials and detectors for enhanced responsivity. ACS Photonics 2020, 7, 1950–1956.
Huang, H. X.; Zhang, D. H.; Wei, N.; Wang, S.; Peng, L. M. Plasmon- induced enhancement of infrared detection using a carbon nanotube diode. Adv. Opt. Mater. 2017, 5, 1600865.
Peng, R. M.; Khaliji, K.; Youngblood, N.; Grassi, R.; Low, T.; Li, M. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 2017, 17, 6315–6320.
Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide- integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.
Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.
Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.
Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414–6417.
Liu, Q. R.; Hu, S. Y.; Zhang, C. X.; Ouyang, H.; Jiang, T. Polarization- dependent and wavelength-tunable optical limiting and transparency of multilayer selenium-doped black phosphorus. Adv. Opt. Mater. 2021, 9, 2001562.
Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 2011, 23, 5419–5424.
Vabbina, P.; Choudhary, N.; Chowdhury, A. A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction. ACS Appl. Mater. Interfaces 2015, 7, 15206–15213.
Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, M. A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.
Li, G. H.; Liu, L.; Wu, G.; Chen, W.; Qin, S. J.; Wang, Y.; Zhang, T. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small 2016, 12, 5019– 5026.
Shimatani, M.; Fukushima, S.; Okuda, S.; Ogawa, S. High- performance graphene/InSb heterojunction photodetectors for high-resolution mid-infrared image sensors. Appl. Phys. Lett. 2020, 117, 173102.
Moein, T.; Gailevičius, D.; Katkus, T.; Ng, S. H.; Lundgaard, S.; Moss, D. J.; Kurt, H.; Mizeikis, V.; Staliūnas, K.; Malinauskas, M. et al. Optically-thin broadband graphene-membrane photodetector. Nanomaterials 2020, 10, 407.
Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/ Graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.
Luo, W. G.; Cao, Y. F.; Hu, P. G.; Cai, K. M.; Feng, Q.; Yan, F. G.; Yan, T. F.; Zhang, X. H.; Wang, K. Y. Gate tuning of high- performance InSe-based photodetectors using graphene electrodes. Adv. Opt. Mater. 2015, 3, 1418–1423.
Nalwa, H. S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602.
Lee H.; Bak S.; Kim J.; Lee H. The effect of the dopant's reactivity for high-performance 2D MoS2 thin-film transistor. Nano Res. 2021, 14, 198–204.
Wu, Z. Q.; Yang, J. L.; Manjunath, N. K.; Zhang, Y. J.; Feng, S. R.; Lu, Y. H.; Wu, J. H.; Zhao, W. W.; Qiu, C. Y.; Li, J. F. et al. Gap-mode surface-Plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 2018, 30, 1706527.
Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.
Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator- free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950–960.
Xu, H.; Han, X.; Dai, X.; Liu, W.; Wu, J.; Zhu, J.; Kim, D.; Zou, G.; Sablon, K. A.; Sergeev, A.; Guo, Z.; Liu, H. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561-1706569.
Kim, S.; Maassen, J.; Lee, J.; Kim, S. M.; Han, G.; Kwon, J.; Hong, S.; Park, J.; Liu, N.; Park, Y. C. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv. Mater. 2018, 30, 1705542-1705551.
Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L. F.; Liang, S. J. et al. Asymmetric schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 2018, 28, 1800657-1800666.
Deng, J. N.; Zong, L. Y.; Zhu, M. S.; Liao, F. Y.; Xie, Y. Y.; Guo, Z. X.; Liu, J.; Lu, B. R.; Wang, J. L.; Hu, W. D. et al. MoS2/HfO2/ Silicon-on-insulator dual-photogating transistor with ambipolar photoresponsivity for high-resolution light wavelength detection. Adv. Funct. Mater. 2019, 29, 1906242.
Hu, X.; Li, X. Y.; Li, G. Y.; Ji, T.; Ai, F. J.; Wu, J. H.; Ha, E. N.; Hu, J. Q. Recent progress of methods to enhance photovoltaic effect for self-powered heterojunction photodetectors and their applications in inorganic low-dimensional structures. Adv. Funct. Mater. 2021, 31, 2011284–2011306.
Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.
Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-Ⅱ MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.
Chen, W. J.; Liang, R. R.; Zhang, S. Q.; Liu, Y.; Cheng, W. J.; Sun, C. C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132.
Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.
Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.
Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.
Wu, D.; Jia, C.; Shi, F. H.; Zeng, L. H.; Lin P.; Dong, L.; Shi Z. F.; Tian Y. T.; Li X. J.; Jie J. S. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A, 2020, 8, 3632–3642.
Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D. S.; Gity, F.; Monaghan, S.; Hurley, P. K.; Lemme, M. C.; Duesberg, G. S. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 2018, 18, 1794–1800.
Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.
Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223–227.
Feng, W.; Wu, J. B.; Li, X. L.; Zheng, W.; Zhou, X.; Xiao, K.; Cao, W. W.; Yang, B.; Idrobo, J. C.; Basile, L. et al. Ultrahigh photo- responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 2015, 3, 7022–7028.
Dai, M. J.; Chen, H. Y.; Wang, F. K.; Long, M. S.; Shang, H. M.; Hu, Y. X.; Li, W.; Ge, C. Y.; Zhang, J.; Zhai, T. Y. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 2020, 14, 9098–9106.
Dai, M. J.; Chen, H. Y.; Feng, R.; Feng, W.; Hu, Y. X.; Yang, H. H.; Liu, G. B.; Chen, X. S.; Zhang, J.; Xu, C. Y. et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface Plasmon resonance and asymmetric Schottky junction. ACS Nano 2018, 12, 8739–8747.
Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.
Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.
Rahman, M.; Davey, K.; Qiao, S. Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funct. Mater. 2017, 27, 1606129.
Qin, J. K.; Qiu, G.; He, W.; Jian, J.; Si, M. W.; Duan, Y. Q.; Charnas, A.; Zemlyanov, D. Y.; Wang, H. Y.; Shao, W. Z. et al. Epitaxial growth of 1D atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254.
Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 2016, 26, 4551–4560.
Afzal, A. M.; Javed, Y.; Akhtar Shad, N.; Iqbal, M. Z.; Dastgeer, G.; Munir Sajid, M.; Mumtaz, S., Tunneling-based rectification and photoresponsivity in black phosphorus/hexagonal boron nitride/ rhenium diselenide van Der Waals heterojunction diode. Nanoscale 2020, 12, 3455–3468.
Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.