AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gd-doped CuBi2O4/CuO heterojunction film photocathodes for photoelectrochemical H2O2 production through oxygen reduction

Zixin Li2Quanlong Xu2Faliang Gou1Bing He1Wei Chen2Weiwei Zheng3Xu Jiang1Kai Chen1Chenze Qi1Dekun Ma1( )
Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process,Shaoxing University,Shaoxing,312000,China;
Zhejiang Key Laboratory of Carbon Materials,Wenzhou University,Wenzhou,325027,China;
Department of Chemistry, Syracuse University,Syracuse,New York,13244,USA;
Show Author Information

Graphical Abstract

Abstract

Photoelectrochemical oxygen reduction reaction (ORR) toward H2O2 is highly desirable because only sunlight, O2 and water are required in the process. However, the corresponding studies are still at its infancy because of the lack of suitable photocathodes, especially inorganic semiconductor photocathodes. In this work, we report CuBi2O4/CuO (CBO/CuO) heterojunction submicrocrystalline film photocathodes with efficient ORR activity for H2O2 production. The heterojunction film photocathodes were prepared through thermal evaporation of Cu and Bi metals under vacuum and subsequent annealing treatment. Furthermore, the doping of Gd3+ ions into CBO/CuO could significantly enhance the yield of H2O2. As a result, the concentration of H2O2 could reach 1.3 mM within 30 min, which is 6 times higher than that obtained on the pristine CBO/CuO photocathode. The theoretical calculations suggested that the introduction of Gd could adjust the electronic structure of CBO surface and promote 2e ORR pathway for selective production of H2O2. Our work not only provides a new strategy for designing highly efficient photocathode for H2O2 production but also will evoke more interest in photoelectrocatalytic ORR through inorganic semiconductor photocathode.

Electronic Supplementary Material

Download File(s)
12274_2021_3638_MOESM1_ESM.pdf (3.8 MB)

References

1

Li, C. L.; He, J. F.; Xiao, Y. Q.; Li, Y. B.; Delaunay, J. J. Earth- abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ. Sci. 2020, 13, 3269-3306.

2

Ma, C. Y.; Ma, D. K.; Yu, W. Y.; Chen W.; Huang, S. M. Ag and N-doped graphene quantum dots co-modified CuBi2O4 submicron rod photocathodes with enhanced photoelectrochemical activity. Appl. Surf. Sci. 2019, 481, 661-668.

3

Berglund, S. P.; Abdi, F. F.; Bogdanoff, P.; Chemseddine, A.; Friedrich, D.; van de Krol, R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem. Mater. 2016, 28, 4231-4242.

4

Wang, Y. J.; Wang, H. J.; Woldu, A. R.; Zhang, X. H.; He, T. Optimization of charge behavior in nanoporous CuBi2O4 photocathode for photoelectrochemical reduction of CO2. Catal. Today 2019, 335, 388-394.

5

Kang, D.; Hill, J. C.; Park, Y.; Choi, K. S. Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag- doped CuBi2O4 photocathodes. Chem. Mater. 2016, 28, 4331-4340.

6

Lumley, M. A.; Radmilovic, A.; Jang, Y. J.; Lindberg, A. E.; Choi, K. S. Perspectives on the development of oxide-based photocathodes for solar fuel production. J. Am. Chem. Soc. 2019, 141, 18358-18369.

7

Kim, J. H.; Adishev, A.; Kim, J.; Kim, Y. S.; Cho, S.; Lee, J. S. All-bismuth-based oxide tandem cell for solar overall water splitting. ACS Appl. Energy Mater. 2018, 1, 6694-6699.

8

Jang, Y. J.; Lee, J. S. Photoelectrochemical water splitting with p-type metal oxide semiconductor photocathodes. ChemSusChem 2019, 12, 1835-1845.

9

Xu, Y. X.; Jian, J.; Li, F.; Liu, W.; Jia, L. C.; Wang, H. Q. Porous CuBi2O4 photocathodes with rationally engineered morphology and composition towards high-efficiency photoelectrochemical performance. J. Mater. Chem. A 2019, 7, 21997-22004.

10

Pulipaka, S.; Boni, N.; Ummethala, G.; Meduri, P. CuO/CuBi2O4 heterojunction photocathode: High stability and current densities for solar water splitting. J. Catal. 2020, 387, 17-27.

11

Cao, D. W.; Nasori, N.; Wang, Z. J.; Mi, Y.; Wen, L. Y.; Yang, Y.; Qu, S. C.; Wang, Z. G.; Lei, Y. p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting. J. Mater. Chem. A 2016, 4, 8995-9001.

12

Xu, N.; Li, F.; Gao, L. L.; Hu, H. G.; Hu, Y. P.; Long, X. F.; Ma, J. T.; Jin, J. N, Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 2018, 6, 7257-7264.

13

Wang, F. X.; Septina, W.; Chemseddine, A.; Abdi, F. F.; Friedrich, D.; Bogdanoff, P.; van de Krol, R.; Tilley, S. D.; Berglund, S. P. Gradient self-doped CuBi2O4 with highly improved charge separation efficiency. J. Am. Chem. Soc. 2017, 139, 15094-15103.

14

Zahran, Z. N.; Mohamed E. A.; Haleem, A. A.; Naruta, Y. Efficient solar-assisted O2 reduction using a cofacial iron porphyrin dimer catalyst integrated into a p-CuBi2O4 photocathode. Chem. —Eur. J. 2018, 24, 10606-10611.

15

Ohno, T.; Tanaka, T.; Teng, Z. Y. Photoelectrochemical syntheses of H2O2 via O2 reduction using p-type CuBi2O4 or Cu3VS4 electrode under visible light. ECS Meet. Abstr. 2020, MA2020-02, 3079.

16

Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614-2622.

17

Yang, Q. H.; Xu, W. W.; Gong, S.; Zheng, G. K.; Tian, Z. Q.; Wen, Y. J.; Peng, L. M.; Zhang, L. J.; Lu, Z. Y.; Chen, L. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 2020, 11, 5478.

18

Shen, R. G.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High- concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099-2110.

19

Zhang, J. Y.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts. Small 2020, 16, 1902845.

20

Sheng, H. Y.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J. Z.; Song, B.; Schmidt, J. R.; Jin, S. Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 2020, 13, 4189-4203.

21

Jakešová, M.; Apaydin, D. H.; Sytnyk, M.; Oppelt, K.; Heiss, W.; Sariciftci, N. S.; Głowacki, E. D. Hydrogen-bonded organic semiconductors as stable photoelectrocatalysts for efficient hydrogen peroxide photosynthesis. Adv. Funct. Mater. 2016, 26, 5248-5254.

22

Jung, O.; Pegis, M. L.; Wang Z. X.; Banerjee, G.; Nemes, C. T.; Hoffeditz, W. L.; Hupp, J. T.; Schmuttenmaer, C. A.; Brudvig, G. W.; Mayer, J. M. Highly active NiO photocathodes for H2O2 production enabled via outer-sphere electron transfer. J. Am. Chem. Soc. 2018, 140, 4079-4084.

23

Fan, W. J.; Zhang, B. Q.; Wang, X. Y.; Ma, W. G.; Li D.; Wang, Z. L.; Dupuis, M.; Shi, J. Y.; Liao, S. J.; Li, C. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy Environ. Sci. 2020, 13, 238-245.

24

Fuku, K.; Sayama, K. Efficient oxidative hydrogen peroxide pro-duction and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chem. Commun. 2016, 52, 5406-5409.

25

Chai, Y. Y.; Qu, D. P.; Ma, D. K.; Chen, W.; Huang, S. M. Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photo-catalytic activity for reduction of 4-nitroaniline to p-phenylenediamine. Appl. Surf. Sci. 2018, 450, 1-8.

26

Hofman, E.; Khammang, A; Wright, J. T.; Li, Z. J.; McLaughlin, P. F.; Davis, A. H.; Franck, J. M.; Chakraborty, A.; Meulenberg, R. W.; Zheng, W. W. Decoupling and coupling of the host-dopant interaction by manipulating dopant movement in core/shell quantum dots. J. Phys. Chem. Lett. 2020, 11, 5992-5999.

27

Davis, A. H.; Hofman, E.; Chen, K.; Li, Z. J.; Khammang, A; Zamani, H.; Franck, J. M.; Maye, M. M.; Meulenberg, R. W.; Zheng, W. W. Exciton energy shifts and tunable dopant emission in manganese-doped two-dimensional CdS/ZnS core/shell nanoplatelets. Chem. Mater. 2019, 31, 2516-2523.

28

Gottesman, R.; Song, A. G.; Levine, I.; Krause, M.; Islam, A. T. M. N.; Abou-Ras, D.; Dittrich, T.; van de Krol, R.; Chemseddine, A. Pure CuBi2O4 photoelectrodes with increased stability by rapid thermal processing of Bi2O3/CuO grown by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1910832.

29

Datta, P.; Majewski, P.; Aldinger, F. Study of gadolinia-doped ceria solid electrolyte surface by XPS. Mater. Charact. 2009, 60, 138-143.

30

Nogueira, A. C.; Gomes, L. E.; Ferencz, J. A. P.; Rodrigues, J. E. F. S.; Gonçalves, R. V.; Wender, H. Improved visible light photoactivity of CuBi2O4/CuO heterojunctions for photodegradation of methylene blue and metronidazole. J. Phys. Chem. C 2019, 123, 25680-25690.

31

Baek, J. H.; Gill, T. M.; Abroshan, H.; Park, S.; Shi, X. J.; Nørskov, J.; Jung, H. S.; Siahrostami, S. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Lett. 2019, 4, 720−728.

32

Park, H. S.; Lee, C. Y.; Reisner, E. Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation. Phys. Chem. Chem. Phys. 2014, 16, 22462-22465.

33

Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699-2711.

34

Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z. Zheng, W. W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.

35

Zhang, Z. M.; Lindley, S. A.; Dhall, R.; Bustillo, K.; Han, W. H.; Xie, E. Q.; Cooper, J. K. Beneficial CuO phase segregation in the ternary p-type oxide photocathode CuBi2O4. ACS Appl. Energy Mater. 2019, 2, 4111-4117.

36

Thorseth, M. A.; Tornow, C. E.; Tse, E. C. M.; Gewirth, A. A. Cu complexes that catalyze the oxygen reduction reaction. Coordin. Chem. Rev. 2013, 257, 130-139.

37

Cho, K.; Han, S. W.; Suh, M. P. Copper-organic framework fabricated with CuS nanoparticles: Synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 15301-15305.

38

Wang, H. W.; Luo, W. J.; Zhu, L. J.; Zhao, Z. P.; E B.; Tu, W. Z.; Ke, X. X.; Sui, M. L.; Chen, C. F.; Chen Q. et al. Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts. Adv. Funct. Mater. 2018, 28, 1707219.

39

Zhang, N.; Zheng, F. F.; Huang, B. L.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Exploring Bi2Te3 nanoplates as versatile catalysts for electrochemical reduction of small molecules. Adv. Mater. 2020, 32, 1906477.

40

Thorum, M. S.; Hankett, J. M.; Gewirth, A. A. Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: Evidence for metal-centered activity. J. Phys. Chem. Lett. 2011, 2, 295-298.

41

Li, Z. J.; Hofman, E.; Blaker, A.; Davis, A. H.; Dzikovski, B.; Ma, D. K.; Zheng, W. W. Interface engineering of Mn-doped ZnSe-based core/shell nanowires for tunable host-dopant coupling. ACS Nano 2017, 11, 12591-12600.

42

Noffke, B. W.; Li, Q. Q.; Raghavachari, K.; Li, L. S. A model for the pH-dependent selectivity of the oxygen reduction reaction electrocatalyzed by N-doped graphitic carbon. J. Am. Chem. Soc. 2016, 138, 13923-13929.

43

Nicoll, W. D.; Smith, A. F. Stability of dilute alkaline solutions of hydrogen peroxide. Ind. Eng. Chem. 1955, 47, 2548-2554.

Nano Research
Pages 3439-3457
Cite this article:
Li Z, Xu Q, Gou F, et al. Gd-doped CuBi2O4/CuO heterojunction film photocathodes for photoelectrochemical H2O2 production through oxygen reduction. Nano Research, 2021, 14(10): 3439-3457. https://doi.org/10.1007/s12274-021-3638-y
Topics:

631

Views

26

Crossref

25

Web of Science

26

Scopus

3

CSCD

Altmetrics

Received: 05 March 2021
Revised: 27 May 2021
Accepted: 02 June 2021
Published: 28 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return