AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries

Yanchun Xue1Xingmei Guo1Mengrong Wu1Jiale Chen1Mengting Duan1Jing Shi1Junhao Zhang1( )Fu Cao1Yuanjun Liu1Qinghong Kong2
School of Environmental and Chemical Engineering,Jiangsu University of Science and Technology,Zhenjiang,212003,China;
School of the Environment and Safety Engineering,Jiangsu University,Zhenjiang,212013,China;
Show Author Information

Graphical Abstract

Abstract

Developing suitable electrode materials for electrochemical energy storage devices by biomorph assisted design has become a fascinating topic due to the fantastic properties derived from bio-architectures. Herein, zephyranthes-like Co2NiSe4 arrays grown on butterfly wings derived three-dimensional (3D) carbon framework (Z-Co2NiSe4/BWC) is fabricated via hydrothermal assembly and further conversion method. Benefiting from its unique structure and multi-components, the obtained Z-Co2NiSe4/BWC electrode for supercapacitor delivers an excellent specific capacitance of 2, 280 F·g−1 at 1 A·g−1. Impressively, the constructed asymmetric supercapacitor using Co2NiSe4/BWC as positive electrode and activated butterfly wings carbon as negative electrode acquires a high energy density of 42.9 Wh·kg−1 at a power density of 800 W·kg−1 with robust stability of 94.6% capacitance retention at 10 A·g−1 after 5, 000 cycles. Moreover, the Z-Co2NiSe4/BWC as anode for sodium-ion batteries exhibits a high specific capacity of 568 mAh·g−1 at 0.1 A·g−1 and high cycling stability (maintaining 80.1% of the second cycle after 100 cycles). The outstanding electrochemical performances are ascribed to that the synergistic effect of bimetallic selenides and N-doped carbon improves electrochemical activities and conductivity. One-dimensional (1D) nanoneedles grown on 3D porous framework increase the exposure of redox-active sites, endow adequate transmission channels of electrons/ions, and guarantee stability of the electrode during charge/discharge processes. This study will shed light on the avenue towards extending such nanohybrids to excellent energy storage applications.

Electronic Supplementary Material

Download File(s)
12274_2021_3640_MOESM1_ESM.pdf (4.4 MB)

References

1

Ding, Y. C.; Cai, P. W.; Wen, Z. H. Electrochemical neutralization energy: From concept to devices. Chem. Soc. Rev. 2021, 50, 1495- 1511.

2

Liu, G. Z.; Huang, M.; Zhang, Z. C. Y.; Xi, B. J.; Li, H. B.; Xiong, S. L. Robust S-doped TiO2@N, S-codoped carbon nanotube arrays as free-binder anodes for efficient sodium storage. J. Energy Chem. 2021, 53, 175-184.

3

Xie, D.; Tang, W. J.; Wang, Y. D.; Xia, X. H.; Zhong, Y.; Zhou, D.; Wang, D. H.; Wang, X. L.; Tu, J. P. Erratum to: Facile fabrication of integrated three-dimensional CMoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res. 2021, 14, 896-896.

4

Tian, W. Z.; Ma, W. Z.; Feng, Z. Y.; Tian, F.; Li, H. B.; Liu, J.; Xiong, S. L. Formation of hierarchical Fe7Se8 nanorod bundles with enhanced sodium storage properties. J. Energy Chem. 2020, 44, 97-105.

5

Tabassum, H.; Zhi, C. X.; Hussain, T.; Qiu, T. J.; Aftab, W.; Zou, R. Q. Encapsulating trogtalite CoSe2 nanobuds into BCN nanotubes as high storage capacity sodium ion battery anodes. Adv. Energy Mater. 2019, 9, 1901778.

6

Ge, P.; Li, S. J.; Xu, L. Q.; Zou, K. Y.; Gao, X.; Cao, X. Y.; Zou, G. Q.; Hou, H.; Ji, X. B. Hierarchical hollow-microsphere metal- selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 2019, 9, 1803035.

7

Zhang, C. Q.; Biendicho, J. J.; Zhang, T.; Du, R. F.; Li, J. S.; Yang, X. H.; Arbiol, J.; Zhou, Y. T.; Morante, J. R.; Cabot, A. Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903842.

8

Ali, Z.; Asif, M.; Huang, X. X.; Tang, T. Y.; Hou, Y. L. Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 2018, 30, 1802745.

9

Ao, K. L.; Dong, J. C.; Fan, C. H.; Wang, D.; Cai, Y. B.; Li, D. W.; Huang, F. L.; Wei, Q. F. Formation of yolk-shelled nickel-cobalt selenide dodecahedral nanocages from metal-organic frameworks for efficient hydrogen and oxygen evolution. ACS Sustain. Chem. Eng. 2018, 6, 10952-10959.

10

Ali, Z.; Zhang, T.; Asif, M.; Zhao, L. N.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131-167.

11

Yang, P. Y.; Wu, Z. Y.; Jiang, Y. C.; Pan, Z. C.; Tian, W. C.; Jiang, L.; Hu, L. Fractal (NixCo1-x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 2018, 8, 1801392.

12

Li, S.; Ruan, Y. J.; Xie, Q. Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochim. Acta 2020, 356, 136837.

13

Li, L. J.; Zhao, J. C.; Zhu, Y. Q.; Pan, X. F.; Wang, H. X.; Xu, J. L. Bimetallic Ni/Co-ZiF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance. Electrochim. Acta 2020, 353, 136532.

14

Guo, H. N.; Liu, G. S.; Wang, M. Y.; Zhang, Y.; Li, W. Q.; Chen, K.; Liu, Y. F.; Yue, M. Y.; Wang, Y. J. In-situ fabrication of bone-like CoSe2 nano-thorn loaded on porous carbon cloth as a flexible electrode for Na-ion storage. Chem. —Asian J. 2020, 15, 1493-1499.

15

Shi, X.; Wang, H.; Ji, S.; Linkov, V.; Liu, F. S.; Wang, R. F. CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chem. Eng. J. 2019, 364, 320-327.

16

Lu, K.; Hu, Z. Y.; Ma, J. Z.; Ma, H. Y.; Dai, L. M.; Zhang, J. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 2017, 8, 527.

17

Huang, M.; Mi, K.; Zhang, J. H.; Liu, H. L.; Yu, T. T.; Yuan, A. H.; Kong, Q. H.; Xiong, S. L. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 2017, 5, 266-274.

18

Liu, T. W.; Zheng, Y. W.; Zhao, W.; Cui, L.; Liu, J. Q. Uniform generation of NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. J. Colloid Interface Sci. 2019, 556, 743-752.

19

Tang, X.; Liu, H.; Su, D. W.; Notten, P. H. L.; Wang, G. X. Hierarchical sodium-rich prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979-3990.

20

Li, X.; Wu, H. J.; Guan, C.; Elshahawy, A. M.; Dong, Y. T.; Pennycook, S. J.; Wang, J. (Ni, Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni, Co)Se2 core for asymmetric supercapacitors. Small 2019, 15, 1803895.

21

Liu, Z. L.; Wang, X. X.; Wu, Z. Y.; Yang, S. J.; Yang, S. L.; Chen, S. P.; Wu, X. T.; Chang, X. H.; Yang, P. P.; Zheng, J. et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated na surface for sodium/lithium ion batteries. Nano Res. 2020, 13, 3157-3164.

22

Sun, T. T.; Huang, C.; Shu, H. B.; Luo, L. P.; Liang, Q. Q.; Chen, M. F.; Su, J. C.; Wang, X. Y. Porous NiCo2S4 nanoneedle arrays with highly efficient electrocatalysis anchored on carbon cloths as self- supported hosts for high-loading Li-S batteries. ACS Appl. Mater. Interfaces 2020, 12, 57975-57986.

23

Zong, W.; Lian, R. Q.; He, G. J.; Guo, H. L.; Ouyang, Y.; Wang, J.; Lai, F. L.; Miao, Y. E.; Rao, D. W.; Brett, D. et al. Vacancy engineering of group vi anions in NiCo2A4 (A = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochim. Acta 2020, 333, 135515.

24

Miao, Y. Q.; Zhao, X. S.; Wang, X.; Ma, C. H.; Cheng, L.; Chen, G.; Yue, H. J.; Wang, L.; Zhang, D. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 2020, 13, 3041-3047.

25

Suo, L. Y.; Zhu, J. H.; Shen, X. Y.; Wang, Y. Z.; Han, X.; Chen, Z. Q.; Li, Y.; Liu, Y. R.; Wang, D.; Ma, Y. W. Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries. Carbon 2019, 151, 1-9.

26

Zhang, H.; Wang, T. T.; Sumboja, A.; Zang, W. J.; Xie, J. P.; Gao, D. Q.; Pennycook, S. J.; Liu, Z. L.; Guan, C.; Wang, J. Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1804846.

27

Oh, S. H.; Cho, J. S. Hierarchical (Ni, Co)Se2/CNT hybrid microspheres consisting of a porous yolk and embossed hollow thin shell for high-performance anodes in sodium-ion batteries. J. Alloys Compd. 2019, 806, 1029-1038.

28

Gao, M. Y.; Tang, Z. H.; Wu, M. R.; Chen, J. L.; Xue, Y. C.; Guo, X. M.; Liu, Y. J.; Kong, Q. H.; Zhang, J. H. Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries. J. Alloys Compd. 2021, 857, 157554.

29

Wan, W. J.; Liu, X. J.; Li, H. Y.; Peng, X. Y.; Xi, D. S.; Luo, J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 240, 193-200.

30

Wei, R. C.; Huang, M.; Ma, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage. J. Energy Chem. 2020, 49, 136-146.

31

Fang, Y. J.; Yu, X. Y.; Lou, X. W. D. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high- performance sodium-ion batteries. Adv. Mater. 2018, 30, 1706668.

32

Luo, H.; Jiang, W. J.; Lin, C.; Dong, W.; Niu, S.; Huang, L. B.; Zhang, X.; Wei, Z. D.; Hu, J. S. Scalable solid-state synthesis of coralline-like nanostructured Co@CoNC electrocatalyst for Zn-air batteries. Chem. Commun. 2018, 54, 8190-8193.

33

Chen, J. L.; Bian, Z. X.; Wu, M. R.; Gao, M. Y.; Shi, J.; Duan, M. T.; Guo, X. M.; Liu, Y. J.; Zhang, J. H.; Kong, Q. H. Preparation of CoSnO3/CNTs/S and its electrochemical performance as cathode material for lithium-sulfur batteries. ChemElectroChem 2020, 7, 4209-4217.

34

Chen, W. Y.; Zhang, X. M.; Mo, L. E.; Zhang, Y. S.; Chen, S. H.; Zhang, X. X.; Hu, L. H. NiCo2S4 quantum dots with high redox reactivity for hybrid supercapacitors. Chem. Eng. J. 2020, 388, 124109.

35

Chen, J. L.; Liu, H. L.; Wan, X. H.; Xue, Y. C.; Zhang, J. H.; Liu, Y. J.; Guo, X. M.; Kong, Q. H.; Yuan, A. H. Constructing Cu2O@Ni-Al LDH core-shell structure for high performance supercapacitor electrode material. J. Nanopart. Res. 2019, 21, 215.

36

Guo, X. M.; Liu, H. L.; Xue, Y. C.; Chen, J. L.; Wan, X. H.; Zhang, J. H.; Liu, Y. J.; Yuan, A. H.; Kong, Q. H.; Fan, H. NiAl layered double hydroxide flowers with ultrathin structure grown on 3D graphene for high-performance supercapacitors. Eur. J. Inorg. Chem. 2019, 2019, 3719-3723.

37

Xue, Y. C.; Yu, T. T.; Chen, J. L.; Wan, X. H.; Cai, X. W.; Guo, X. M.; Zhang, F.; Xiong, W. W.; Liu, Y. J.; Kong, Q. H. et al. Fabrication of GeO2 microspheres/hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries. J. Solid State Chem. 2020, 286, 121303.

38

Lu, W.; Shen, J. L.; Zhang, P.; Zhong, Y. J.; Hu, Y.; Lou, X. W. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem. , Int. Ed. 2019, 58, 15441-15447.

39

Zhang, J. X.; Qin, C. C.; Zhong, Y. S.; Wang, X.; Wang, W.; Hu, D. D.; Liu, X. S.; Xue, C. Z.; Zhou, R.; Shen, L. et al. Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics. Nano Res. 2020, 13, 2828-2836.

40

Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701330.

41

Cui, Y. X.; Zhang, J.; Jin, C.; Liu, Y. X.; Luo, W. H.; Zheng, W. J. Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small 2019, 15, 1804318.

42

Hu, Y. Z.; Huang, C. H.; Jiang, S. P.; Qin, Y. L.; Chen, H. C. Hierarchical nickel-cobalt selenide nanoparticles/nanosheets as advanced electroactive battery materials for hybrid supercapacitors. J. Colloid Interface Sci. 2020, 558, 291-300.

43

Liu, Y. L.; Yan, C.; Wang, G. G.; Li, F.; Kang, Q.; Zhang, H. Y.; Han, J. C. Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices. Nanoscale 2020, 12, 4040-4050.

44

Du, L. L.; Du, W. M.; Ren, H. L.; Wang, N.; Yao, Z. J.; Shi, X. S.; Zhang, B.; Zai, J. T.; Qian, X. F. Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 22527-22535.

45

Zhu, Y. R.; Huang, Z. D.; Hu, Z. L.; Xi, L. J.; Ji, X. B.; Liu, Y. 3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim. Acta 2018, 269, 30-37.

46

Jin, A. H.; Yu, S. H.; Park, J. H.; Kang, S. M.; Kim, M. J.; Jeon, T. Y.; Mun, J.; Sung, Y. E. Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries. Nano Res. 2019, 12, 2609-2613.

47

Guo, X. M.; Qian, C.; Wan, X. H.; Zhang, W.; Zhu, H. W.; Zhang, J. H.; Yang, H. X.; Lin, S. L.; Kong, Q. H.; Fan, T. X. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale 2020, 12, 4374-4382.

48

Ali, Z.; Asif, M.; Zhang, T.; Huang, X. X.; Hou, Y. L. General approach to produce nanostructured binary transition metal selenides as high-performance sodium ion battery anodes. Small 2019, 15, 1901995.

49

Guo, X. M.; Qian, C.; Shi, R. H.; Zhang, W.; Xu, F.; Qian, S. L.; Zhang, J. H.; Yang, H. X.; Yuan, A. H.; Fan, T. X. Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small 2019, 15, 1804855.

50

Yang, S. H.; Park, S. K.; Kang, Y. C. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem. Eng. J. 2019, 370, 1008-1018.

51

Wang, X.; Chen, Y.; Fang, Y. J.; Zhang, J. T.; Gao, S. Y.; Lou, X. W. Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries. Angew. Chem. , Int. Ed. 2019, 58, 2675-2679.

52

Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862-2868.

53

Wang, Y. Y.; Fan, H. S.; Hou, B. H.; Rui, X. H.; Ning, Q. L.; Cui, Z.; Guo, J. Z.; Yang, Y.; Wu, X. L. Ni1.5CoSe5 nanocubes embedded in 3D dual N-doped carbon network as advanced anode material in sodium-ion full cells with superior low-temperature and high-power properties. J. Mater. Chem. A 2018, 6, 22966-22975.

54

Han, J. M.; Fu, Q.; Xi, B. J.; Ni, X. Y.; Yan, C. L.; Feng, J. K.; Xiong, S. L. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium-sulfur batteries. J. Energy Chem. 2021, 52, 1-11.

55

Zhang, D.; Guo, X. M.; Tong, X. Z.; Chen, Y. F.; Duan, M. T.; Shi, J.; Jiang, C. W.; Hu, L. L.; Kong, Q. H.; Zhang, J. H. High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide. J. Alloys Compd. 2020, 837, 155529.

Nano Research
Pages 3598-3607
Cite this article:
Xue Y, Guo X, Wu M, et al. Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Research, 2021, 14(10): 3598-3607. https://doi.org/10.1007/s12274-021-3640-4
Topics:

791

Views

76

Crossref

73

Web of Science

73

Scopus

0

CSCD

Altmetrics

Received: 07 March 2021
Revised: 25 May 2021
Accepted: 02 June 2021
Published: 28 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return