AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation

Qinqin Sang1Shuai Yin1Feng Liu2Huiming Yin1Jia He1Yi Ding1( )
Tianjin Key Laboratory of Advanced Functional Porous Materials,Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology,Tianjin,300384,China;
Kunming Institute of Precious Metals,Kunming,650106,China;
Show Author Information

Graphical Abstract

Abstract

Design and fabrication of highly efficient and stable electrocatalysts remain key challenges in green energy technologies such as low-temperature direct liquid fuel cells. Based on in-depth theoretical calculations, here we demonstrate that surface Pd atoms with high coordination numbers (HCNs) can effectively modulate their adsorption energies for CO and OH, and thus achieve very high performance for formic acid electro-oxidation reaction (FAOR). Based on epitaxial coating Pd atomic layers onto nanoporous gold (NPG) thin membranes and a slight further decoration of Au clusters on top, the resulted core-shell structured NPG-Pd-Au electrocatalyst can demonstrate Pd intrinsic and mass activities of 8.62 mA·cm-2 and 27.25 A·mg-1 respectively at the peak potential around 0.33 V versus saturated calomel electrode toward FAOR, which are far better than those of commercial Pd/C catalysts (1.09 mA·cm-2 and 0.32 A·mg-1) tested under the same conditions. Moreover, the membrane electrode assemblies based on these low precious metal loading electrodes can achieve an anode Pd power efficiency over 10 W·mg-1 in a direct formic acid fuel cell, which is two orders of magnitude higher than that of the commercial Pd/C. These results provide new inspirations for the development of revolutionary electrodes for energy technologies in a rational manner.

Electronic Supplementary Material

Download File(s)
12274_2021_3642_MOESM1_ESM.pdf (3.1 MB)

References

1

Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 2016, 45, 3954-3988.

2

Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188-195.

3

Yang, X. C.; Pachfule, P.; Chen, Y.; Tsumori, N.; Xu, Q. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chem. Commun. 2016, 52, 4171-4174.

4

Zhan, C. Y.; Li, H. Q.; Li, X. M.; Jiang, Y. Q.; Xie, Z. X. Synthesis of PdH0.43 nanocrystals with different surface structures and their catalytic activities towards formic acid electro-oxidation. Sci. China Mater. 2020, 63, 375-382.

5

Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323-329.

6

Rettenmaier, C.; Arán-Ais, R. M.; Timoshenko, J.; Rizo, R.; Jeon, H. S.; Kühl, S.; Chee, S. W.; Bergmann, A.; Cuenya, B. R. Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes. ACS Catal. 2020, 10, 14540-14551.

7

Espinosa, M. M. F.; Cheng, T.; Xu, M. J.; Abatemarco, L.; Choi, C.; Pan, X. Q.; Goddard Ⅲ, W. A.; Zhao, Z. P.; Huang, Y. Compressed intermetallic PdCu for enhanced electrocatalysis. ACS Energy Lett. 2020, 5, 3672-3680.

8

Wang, Y. L.; Hu, P.; Yang, J.; Zhu, Y. A.; Chen, D. C-H bond activation in light alkanes: A theoretical perspective. Chem. Soc. Rev. 2021, 50, 4299-4358.

9

Motagamwala, A. H.; Dumesic, J. A. Microkinetic modeling: A tool for rational catalyst design. Chem. Rev. 2021, 121, 1049-1076.

10

Yoo, J. S.; Abild-Pedersen, F.; Nørskov, J. K.; Studt, F. Theoretical analysis of transition-metal catalysts for formic acid decomposition. ACS Catal. 2014, 4, 1226-1233.

11

Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569-1580.

12

Yang, L.; Li, G. Q.; Chang, J. F.; Ge, J. J.; Liu, C. P.; Vladimir, F.; Wang, G. L.; Jin, Z.; Xing, W. Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl. Catal. B: Environ. 2020, 260, 118200.

13

Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 2019, 5, eaax6322.

14

Chaudhari, N. K.; Joo, J.; Kwon, H. B.; Kim, B.; Kim, H. Y.; Joo, S. H.; Lee, K. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res. 2018, 11, 6111-6140.

15

Xi, Z.; Li, J. R.; Su, D.; Muzzio, M.; Yu, C.; Li, Q.; Sun, S. H. Stabilizing CuPd nanoparticles via CuPd coupling to WO2.72 nanorods in electrochemical oxidation of formic acid. J. Am. Chem. Soc. 2017, 139, 15191-15196.

16

Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 4686-4696.

17

Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. An Effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem., Int. Ed. 2014, 53, 122-126.

18

Liu, S. L.; Wang, Z. Q.; Zhang, H. G.; Yin, S. L.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. B-Doped PdRu nanopillar assemblies for enhanced formic acid oxidation electrocatalysis. Nanoscale 2020, 12, 19159-19164.

19

Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590-1599.

20

Liu, J. W.; Zheng, Y.; Hong, Z. L.; Cai, K.; Zhao, F.; Han, H. Y. Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis. Sci. Adv. 2016, 2, e1600858.

21

Guo, B. B.; Li, Q. L.; Lin, J.; Yu, C.; Gao, X. Q.; Fang, Y.; Liu, Z. Y.; Guo, Z. L.; Tang, C. C.; Huang, Y. Bimetallic AuPd nanoparticles loaded on amine-functionalized porous boron nitride nanofibers for catalytic dehydrogenation of formic acid. ACS Appl. Nano Mater. 2021, 4, 1849-1857.

22

Hernández, A. R.; Estrada, E. M. A.; Ezeta, A.; Manríquez, M. E. Formic acid oxidation on AuPd core-shell electrocatalysts: Effect of surface electronic structure. Electrochim. Acta 2019, 327, 134977.

23

Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem., Int. Ed. 2005, 44, 2080-2084.

24

Hu, S. Z.; Munoz, F.; Noborikawa, J.; Haan, J.; Scudiero, L.; Ha, S. Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Appl. Catal. B: Environ. 2016, 180, 758-765.

25

Lee, S. Y.; Jung, N.; Cho, J.; Park, H. Y.; Ryu, J.; Jang, I.; Kim, H. J.; Cho, E. A.; Park, Y. H.; Ham, H. C. et al. Surface-rearranged Pd3Au/C nanocatalysts by using CO-induced segregation for formic acid oxidation reactions. ACS Catal. 2014, 4, 2402-2408.

26

Lee, J. H.; Cho, J.; Jeon, M.; Ridwan, M.; Park, H. S.; Choi, S. H.; Nam, S. W.; Han, J.; Lim, T. H.; Ham, H. C. et al. Experimental and computational studies of formic acid dehydrogenation over PdAu: Influence of ensemble and ligand effects on catalysis. J. Mater. Chem. A 2016, 4, 14141-14147.

27

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

28

Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129-138.

29

Liu, P.; Guan, P. F.; Hirata, A.; Zhang, L.; Chen, L. Y.; Wen, Y. R.; Ding, Y.; Fujita, T.; Erlebacher, J.; Chen, M. W. Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts. Adv. Mater. 2016, 28, 1753-1759.

30

Wang, K. L.; Ding, Y. Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells. Prog. Nat. Sci. : Mater. Int. 2020, 30, 775-786.

31

Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

32

Jiang, X.; Xiong, Y. X.; Zhao, R. P.; Zhou, J. C.; Lee, J. M.; Tang, Y. W. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Res. 2020, 13, 2691-2696.

33

Lin, H. H.; Muzzio, M.; Wei, K. C.; Zhang, P.; Li, J. R.; Li, N.; Yin, Z. Y.; Su, D.; Sun, S. H. PdAu alloy nanoparticles for ethanol oxidation in alkaline conditions: Enhanced activity and C1 pathway selectivity. ACS Appl. Energy Mater. 2019, 2, 8701-8706.

34

Wang, Z. L.; Liu, P.; Han, J. H.; Cheng, C.; Ning, S. C.; Hirata, A.; Fujita, T.; Chen, M. W. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nat. Commun. 2017, 8, 1066.

35

Lu, X. L.; Yu, T. S.; Wang, H. L.; Qian, L. H.; Lei, P. X. Electrochemical fabrication and reactivation of nanoporous gold with abundant surface steps for CO2 reduction. ACS Catal. 2020, 10, 8860-8869.

36

Zhou, Y.; Hu, X. C.; Fan, Q. Z.; Wen, H. R. Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 2016, 4, 4587-4591.

37

Atkinson Ⅲ, R. W.; John, S. S.; Dyck, O.; Unocic, K. A.; Unocic, R. R.; Burke, C. S.; Cisco, J. W.; Rice, C. A.; Zawodzinski, T. A. Jr.; Papandrew, A. B. Supportless, bismuth-modified palladium nanotubes with improved activity and stability for formic acid oxidation. ACS Catal. 2015, 5, 5154-5163.

38

Qiu, X. Y.; Zhang, H. Y.; Wu, P. S.; Zhang, F. Q.; Wei, S. H.; Sun, D. M.; Xu, L.; Tang, Y. W. One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 2017, 27, 1603852.

39

Fan, X. L.; Yuan, W. Y.; Zhang, D. H.; Li, C. M. Heteropolyacid-mediated self-assembly of heteropolyacid-modified pristine graphene supported Pd nanoflowers for superior catalytic performance toward formic acid oxidation. ACS Appl. Energy Mater. 2018, 1, 411-420.

40

Bin, D.; Yang, B. B.; Ren, F. F.; Zhang, K.; Yang, P.; Du, Y. K. Facile synthesis of PdNi nanowire networks supported on reduced graphene oxide with enhanced catalytic performance for formic acid oxidation. J. Mater. Chem. A 2015, 3, 14001-14006.

41

Lai, J. P.; Niu, W. X.; Li, S. P.; Wu, F. X.; Luque, R.; Xu, G. B. Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 2016, 4, 807-812.

42

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764-772.

43

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390-397.

44

Xu, Y.; Yu, S. S.; Ren, T. L.; Li, C. J.; Yin, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. A quaternary metal-metalloid-nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 2020, 8, 2424-2429.

45

Xu, H.; Zhang, K.; Yan, B.; Wang, J.; Wang, C. Q.; Li, S. M.; Gu, Z. L.; Du, Y. K.; Yang, P. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation. J. Power Sources 2017, 356, 27-35.

46

Zhang, L. Y.; Ouyang, Y. R.; Wang, S.; Wu, D. B.; Jiang, M. C.; Wang, F. Q.; Yuan, W. Y.; Li, C. M. Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 2019, 15, 1904245.

47

Ding, J.; Liu, Z.; Liu, X. R.; Liu, J.; Deng, Y. D.; Han, X. P.; Zhong, C.; Hu, W. B. Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation. Adv. Energy Mater. 2019, 9, 1900955.

48

Ding, J.; Liu, Z.; Liu, X. R.; Liu, B.; Liu, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem., Int. Ed. 2020, 59, 5092-5101.

49

Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

Nano Research
Pages 3502-3508
Cite this article:
Sang Q, Yin S, Liu F, et al. Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation. Nano Research, 2021, 14(10): 3502-3508. https://doi.org/10.1007/s12274-021-3642-2
Topics:

750

Views

17

Crossref

17

Web of Science

17

Scopus

2

CSCD

Altmetrics

Received: 15 March 2021
Revised: 21 May 2021
Accepted: 02 June 2021
Published: 28 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return