Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Together with the blooming of portable smart devices and electric vehicles in the last decade, electrochemical energy storage (EES) devices capable of high-energy and high-power storage are urgently needed. Two-dimensional (2D) materials, benefiting from the short solid-state diffusion distance, are well recognized to possess excellent electrochemical performance. However, liquid diffusion, the rate-determining process in thick electrodes, is notably slow in 2D materials-based electrodes stemming from their stacking during electrode processing, which considerably limits their applications for high energy storage. To fully exploit intrinsic advantages of 2D materials for scalable energy storage devices, this review summarizes several important strategies, ranging from assembly to template methods, to fabricate vertically aligned 2D materials-based electrodes. We further discuss the advantages and challenges of these methods in terms of key features of thick electrodes and illustrate the design principles for high-energy/power devices.
Murray, J.; King, D. Oil's tipping point has passed. Nature 2012, 481, 433-435.
Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.
Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14-18.
Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777-1790.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.
Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204.
Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.
Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483-2498.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.
Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1211.
Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P. L.; Grey, C. P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070.
Thounthong, P.; Raël, S.; Davat, B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J. Power Sources 2009, 193, 376-385.
Sun, H. T.; Zhu, J.; Baumann, D.; Peng, L. L.; Xu, Y. X.; Shakir, I.; Huang, Y.; Duan, X. F. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 2019, 4, 45-60.
Poonam; Sharma, K.; Arora, A.; Tripathi, S. K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801-825.
Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180-186.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. , Int. Ed. 2012, 51, 9994-10024.
Zhang, X.; Zhu, Y.; Bruck, A. M.; Housel, L. M.; Wang, L.; Quilty, C. D.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Understanding aggregation hindered Li-ion transport in transition metal oxide at mesoscale. Energy Storage Mater. 2019, 19, 439- 445.
Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645-648.
Hui, Z. Y.; Mayilvahanan, K. S.; Ganko, K.; Yang, Y.; Zhang, X.; Ju, Z. Y.; Takeuchi, K. J.; Marschilok, A. C.; Yu, G. H.; Takeuchi, E. et al. Optimal electrode-scale design of Li-ion electrodes: A general correlation. Energy Storage Mater. 2021, 39, 176-185.
Li, W. Z.; Lutz, D. M.; Wang, L.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S. Peering into batteries: Electrochemical insight through in situ and Operando methods over multiple length scales. Joule 2021, 5, 77-88.
Li, J.; Meng, Q. P.; Zhang, Y. M.; Peng, L. L.; Yu, G. H.; Marschilok, A. C.; Wu, L. J.; Su, D.; Takeuchi, K. J.; Takeuchi, E. S. et al. Size- dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. Nat. Commun. 2019, 10, 93.
Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76-83.
Zhu, Y.; Qian, Y. M.; Ju, Z. Y.; Ji, Y. J.; Yan, Y.; Liu, Y. Y.; Yu, G. H. Understanding charge storage in hydrated layered solids MOPO4 (M = V, Nb) with tunable interlayer chemistry. ACS Nano 2020, 14, 13824-13833.
Yan, C. S.; Lv, C. D.; Wang, L. G.; Cui, W.; Zhang, L. Y.; Dinh, K. N.; Tan, H. T.; Wu, C.; Wu, T. P.; Ren, Y. et al. Architecting a stable high-energy aqueous Al-ion battery. J. Am. Chem. Soc. 2020, 142, 15295-15304.
Zhang, X.; Ju, Z. Y.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 2021, 11, 2000808.
Zheng, J. X.; Zhao, Q.; Liu, X. T.; Tang, T.; Bock, D. C.; Bruck, A. M.; Tallman, K. R.; Housel, L. M.; Kiss, A. M.; Marschilok, A. C. et al. Nonplanar electrode architectures for ultrahigh areal capacity batteries. ACS Energy Lett. 2019, 4, 271-275.
Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738-762.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two- dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271-279.
Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2016, 16, 742-747.
Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.
Zhu, Y.; Peng, L. L.; Fang, Z. W.; Yan, C. S.; Zhang, X.; Yu, G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30, 1706347.
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.
Quilty, C. D.; Housel, L. M.; Bock, D. C.; Dunkin, M. R.; Wang, L.; Lutz, D. M.; Abraham, A.; Bruck, A. M.; Takeuchi, E. S.; Takeuchi, K. J. et al. Ex situ and operando XRD and XAS analysis of MoS2: A lithiation study of bulk and nanosheet materials. ACS Appl. Energy Mater. 2019, 2, 7635-7646.
Shao, M. F.; Zhang, R. K.; Li, Z. H.; Wei, M.; Evans, D. G.; Duan, X. Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 2015, 51, 15880-15893.
Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61-64.
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
Chen, D. H.; Peng, L. L.; Yuan, Y. F.; Zhu, Y.; Fang, Z. W.; Yan, C. S.; Chen, G.; Shahbazian-Yassar, R.; Lu, J.; Amine, K. et al. Two- dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett. 2017, 17, 3907-3913.
Zhang, L. Y.; Peng, S. S.; Ding, Y.; Guo, X. L.; Qian, Y. M.; Celio, H.; He, G. H.; Yu, G. H. A graphite intercalation compound associated with liquid Na-K towards ultra-stable and high-capacity alkali metal anodes. Energy Environ. Sci. 2019, 12, 1989-1998.
Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey- graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599-604.
Peng, L. L.; Fang, Z. W.; Li, J.; Wang, L.; Bruck, A. M.; Zhu, Y.; Zhang, Y. M.; Takeuchi, K. J.; Marschilok, A. C.; Stach, E. A. et al. Two-dimensional holey nanoarchitectures created by confined self-assembly of nanoparticles via block copolymers: From synthesis to energy storage property. ACS Nano 2018, 12, 820-828.
Peng, L. L.; Fang, Z. W.; Zhu, Y.; Yan, C. S.; Yu, G. H. Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702179.
Peng, L. L.; Zhu, Y.; Peng, X.; Fang, Z. W.; Chu, W. S.; Wang, Y.; Xie, Y. J.; Li, Y. F.; Cha, J. J.; Yu, G. H. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage. Nano Lett. 2017, 17, 6273-6279.
Zhu, Y.; Qian, Y. M.; Ju, Z. Y.; Peng, L. L.; Yu, G. H. Solvent- dependent intercalation and molecular configurations in metallocene- layered crystal superlattices. Nano Lett. 2018, 18, 6071-6075.
Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano 2018, 12, 8670- 8677.
Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684-6696.
Yan, C. S.; Lv, C. D.; Zhu, Y.; Chen, G.; Sun, J. X.; Yu, G. H. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Adv. Mater. 2017, 29, 1703909.
Gao, H.; Wu, Q.; Hu, Y. X.; Zheng, J. P.; Amine, K.; Chen, Z. H. Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries. J. Phys. Chem. Lett. 2018, 9, 5100- 5104.
Chen, H.; Pei, A.; Wan, J. Y.; Lin, D. C.; Vilá, R.; Wang, H. X.; Mackanic, D.; Steinrück, H. G.; Huang, W.; Li, Y. Z. et al. Tortuosity effects in lithium-metal host anodes. Joule 2020, 4, 938-952.
Heubner, C.; Nickol, A.; Seeba, J.; Reuber, S.; Junker, N.; Wolter, M.; Schneider, M.; Michaelis, A. Understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2- based cathodes for high energy Li-ion batteries. J. Power Sources 2019, 419, 119-126.
Owen, J. R. Rechargeable lithium batteries. Chem. Soc. Rev. 1997, 26, 259-267.
Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, 1975.
Bruggeman, D. A. G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann. Phys. 1935, 416, 636-664.
Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium- ion battery electrodes. Nano Res. 2014, 7, 1-62.
Zhang, X. Y.; Hou, L. L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671.
Tian, R. Y.; Breshears, M.; Horvath, D. V.; Coleman, J. N. The rate performance of two-dimensional material-based battery electrodes may not be as good as commonly believed. ACS Nano 2020, 14, 3129-3140.
Tian, R. Y.; Park, S. H.; King, P. J.; Cunningham, G.; Coelho, J.; Nicolosi, V.; Coleman, J. N. Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 2019, 10, 1933.
Ju, Z. Y.; Zhang, X.; King, S. T.; Quilty, C. D.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Bock, D. C.; Wang, L.; Marschilok, A. C. et al. Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems. Appl. Phys. Rev. 2020, 7, 041405.
Ebner, M.; Chung, D. W.; García, R. E.; Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 2014, 4, 1301278.
van der Kooij, F. M.; Kassapidou, K.; Lekkerkerker, H. N. W. Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 2000, 406, 868-871.
Narayan, R.; Kim, J. E.; Kim, J. Y.; Lee, K. E.; Kim, S. O. Graphene oxide liquid crystals: Discovery, evolution and applications. Adv. Mater. 2016, 28, 3045-3068.
Davidson, P.; Penisson, C.; Constantin, D.; Gabriel, J. C. P. Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets. Proc. Natl. Acad. Sci. USA 2018, 115, 6662-6667.
Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627-659.
Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409-412.
Yao, B. W.; Chen, J.; Huang, L.; Zhou, Q. Q.; Shi, G. Q. Base- induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623-1629.
Liu, Y. J.; Xu, Z.; Gao, W. W.; Cheng, Z. D.; Gao, C. Graphene and other 2D colloids: Liquid crystals and macroscopic fibers. Adv. Mater. 2017, 29, 1606794.
Ma, H. Y.; Geng, H. Y.; Yao, B. W.; Wu, M. M.; Li, C.; Zhang, M.; Chi, F. Y.; Qu, L. T. Highly ordered graphene solid: An efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability. ACS Nano 2019, 13, 9161-9170.
Liu, M. J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015, 517, 68-72.
Lu, X. L.; Feng, X. D.; Werber, J. R.; Chu, C. H.; Zucker, I.; Kim, J. H.; Osuji, C. O.; Elimelech, M. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. USA 2017, 114, E9793-E9801.
Wang, M. S.; He, L.; Zorba, S.; Yin, Y. D. Magnetically actuated liquid crystals. Nano Lett. 2014, 14, 3966-3971.
Wang, M. S.; He, L.; Xu, W. J.; Wang, X.; Yin, Y. D. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew. Chem. , Int. Ed. 2015, 54, 7077-7081.
Sander, J. S.; Erb, R. M.; Li, L.; Gurijala, A.; Chiang, Y. M. High- performance battery electrodes via magnetic templating. Nat. Energy 2016, 1, 16099.
Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.
Thai, T.; Zheng, Y. H.; Ng, S. H.; Mudie, S.; Altissimo, M.; Bach, U. Self-assembly of vertically aligned gold nanorod arrays on patterned substrates. Angew. Chem. 2012, 124, 8862-8865.
Li, P. H.; Li, Y.; Zhou, Z. K.; Tang, S. Y.; Yu, X. F.; Xiao, S.; Wu, Z. Z.; Xiao, Q. L.; Zhao, Y. T.; Wang, H. Y. et al. Evaporative self- assembly of gold nanorods into macroscopic 3D plasmonic superlattice arrays. Adv. Mater. 2016, 28, 2511-2517.
Zhu, Y.; Ju, Z. Y.; Zhang, X.; Lutz, D. M.; Housel, L. M.; Zhou, Y. E.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Evaporation-induced vertical alignment enabling directional ion transport in a 2D-nanosheet-based battery electrode. Adv. Mater. 2020, 32, 1907941.
Ding, L.; Wei, Y. Y.; Wang, Y. J.; Chen, H. B.; Caro, J.; Wang, H. H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem., Int. Ed. 2017, 56, 1825-1829.
Dakhchoune, M.; Villalobos, L. F.; Semino, R.; Liu, L. M.; Rezaei, M.; Schouwink, P.; Avalos, C. E.; Baade, P.; Wood, V.; Han, Y. et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 2021, 20, 362-369.
Tian, R. Y.; Griffin, A.; McCrystall, M.; Breshears, M.; Harvey, A.; Gabbett, C.; Horváth, D. V.; Backes, C.; Jing, Y.; Heine, T. et al. Liquid exfoliated SnP3 nanosheets for very high areal capacity lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2002364.
Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. G. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821-8828.
Xu, C. Y.; Kou, X. D.; Liu, D. D.; Fang, H. T. Vertically aligned architecture in the dense and thick TiO2-graphene nanosheet electrode towards high volumetric and areal capacities. Electrochim. Acta 2021, 370, 137770.
Chen, C. J.; Hu, L. B. Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Acc. Chem. Res. 2018, 51, 3154-3165.
Chen, C. J.; Zhang, Y.; Li, Y. J.; Dai, J. Q.; Song, J. W.; Yao, Y. G.; Gong, Y. H.; Kierzewski, I.; Xie, J.; Hu, L. B. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 2017, 10, 538-545.
Wang, Y. M.; Lin, X. J.; Liu, T.; Chen, H.; Chen, S.; Jiang, Z. J.; Liu, J.; Huang, J. L.; Liu, M. L. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 2018, 28, 1806207.
Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 2008, 10, 155-169.
Zhang, X.; Ju, Z. Y.; Housel, L. M.; Wang, L.; Zhu, Y.; Singh, G.; Sadique, N.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. et al. Promoting transport kinetics in Li-ion battery with aligned porous electrode architectures. Nano Lett. 2019, 19, 8255-8261.
Ju, Z. Y.; Zhu, Y.; Zhang, X.; Lutz, D. M.; Fang, Z. W.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Understanding thickness-dependent transport kinetics in nanosheet-based battery electrodes. Chem. Mater. 2020, 32, 1684-1692.
Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a path to build complex composites. Science 2006, 311, 515-518.
Orangi, J.; Tetik, H.; Parandoush, P.; Kayali, E.; Lin, D.; Beidaghi, M. Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors. Mater. Today Adv. 2021, 9, 100135.
Yang, R.; Zhou, J. Z.; Yang, C.; Qiu, L.; Cheng, H. M. Recent progress in 3D printing of 2D material-based macrostructures. Adv. Mater. Technol. 2020, 5, 1901066.
Pang, Y. K.; Cao, Y. T.; Chu, Y. H.; Liu, M. H.; Snyder, K.; MacKenzie, D.; Cao, C. Y. Additive manufacturing of batteries. Adv. Funct. Mater. 2020, 30, 1906244.
Hassan, K.; Nine, M. J.; Tung, T. T.; Stanley, N.; Yap, P. L.; Rastin, H.; Yu, L.; Losic, D. Functional inks and extrusion-based 3D printing of 2D materials: A review of current research and applications. Nanoscale 2020, 12, 19007-19042.
Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y. N.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587-2594.
Shen, K.; Mei, H. L.; Li, B.; Ding, J. W.; Yang, S. B. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.
Qiao, Y.; Xu, S. M.; Liu, Y.; Dai, J. Q.; Xie, H.; Yao, Y. G.; Mu, X. W.; Chen, C. J.; Kline, D. J.; Hitz, E. M. et al. Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li-CO2 battery. Energy Environ. Sci. 2019, 12, 1100-1107.
Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459-470.
Bo, Z.; Mao, S.; Han, Z. J.; Cen, K. F.; Chen, J. H.; Ostrikov, K. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 2015, 44, 2108-2121.
Zhang, Z. Y.; Lee, C. S.; Zhang, W. J. Vertically aligned graphene nanosheet arrays: Synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 2017, 7, 1700678.
Chen, K. F.; Song, S. Y.; Liu, F.; Xue, D. F. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 2015, 44, 6230-6257.
Xiao, X. C.; Liu, P.; Wang, J. S.; Verbrugge, M. W.; Balogh, M. P. Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem. Commun. 2011, 13, 209-212.
Zheng, S. H.; Li, Z. L.; Wu, Z. S.; Dong, Y. F.; Zhou, F.; Wang, S.; Fu, Q.; Sun, C. L.; Guo, L. W.; Bao, X. H. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano 2017, 11, 4009-4016.
Fan, Y.; Zhang, Q.; Xiao, Q. Z.; Wang, X. H.; Huang, K. High performance lithium ion battery anodes based on carbon nanotube- silicon core-shell nanowires with controlled morphology. Carbon 2013, 59, 264-269.
Wang, C. D.; Chui, Y. S.; Ma, R. G.; Wong, T. L.; Ren, J. G.; Wu, Q. H.; Chen, X. F.; Zhang, W. J. A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 10092-10098.
Wang, C. D.; Li, Y.; Chui, Y. S.; Wu, Q. H.; Chen, X. F.; Zhang, W. J. Three-dimensional Sn-graphene anode for high-performance lithium- ion batteries. Nanoscale 2013, 5, 10599-10604.
Wang, C. D.; Chui, Y. S.; Li, Y.; Chen, X. F.; Zhang, W. J. Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries. Appl. Phys. Lett. 2013, 103, 253903.
Jin, S. X.; Li, N.; Cui, H.; Wang, C. X. Growth of the vertically aligned graphene@amorphous GeOx sandwich nanoflakes and excellent Li storage properties. Nano Energy 2013, 2, 1128-1136.
Li, N.; Jin, S. X.; Liao, Q. Y.; Wang, C. X. ZnO anchored on vertically aligned graphene: Binder-free anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20590-20596.
Wang, Y.; Chen, B.; Seo, D. H.; Han, Z. J.; Wong, J. I.; Ostrikov, K.; Zhang, H.; Yang, H. Y. MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 2016, 8, e268.
Ouyang, B.; Wang, Y.; Zhang, Z.; Rawat, R. S. MoS2 anchored free-standing three dimensional vertical graphene foam based binder- free electrodes for enhanced lithium-ion storage. Electrochim. Acta 2016, 194, 151-160.
Li, P.; Wang, Y. N.; Jeong, J. Y.; Gao, X. M.; Zhang, K.; Neville, A.; Xu, S. S.; Park, J. H. Vertically constructed monolithic electrodes for sodium ion batteries: Toward low tortuosity and high energy density. J. Mater. Chem. A 2019, 7, 25985-25992.